#ifndef _ALPHA_PGTABLE_H #define _ALPHA_PGTABLE_H #include /* * This file contains the functions and defines necessary to modify and use * the Alpha page table tree. * * This hopefully works with any standard Alpha page-size, as defined * in (currently 8192). */ #include #include #include /* For TASK_SIZE */ #include #include struct mm_struct; struct vm_area_struct; /* Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * Entries per page directory level: the Alpha is three-level, with * all levels having a one-page page table. */ #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3)) #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) #define FIRST_USER_ADDRESS 0 /* Number of pointers that fit on a page: this will go away. */ #define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3)) #ifdef CONFIG_ALPHA_LARGE_VMALLOC #define VMALLOC_START 0xfffffe0000000000 #else #define VMALLOC_START (-2*PGDIR_SIZE) #endif #define VMALLOC_END (-PGDIR_SIZE) /* * OSF/1 PAL-code-imposed page table bits */ #define _PAGE_VALID 0x0001 #define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */ #define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */ #define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */ #define _PAGE_ASM 0x0010 #define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */ #define _PAGE_URE 0x0200 /* xxx */ #define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */ #define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */ /* .. and these are ours ... */ #define _PAGE_DIRTY 0x20000 #define _PAGE_ACCESSED 0x40000 #define _PAGE_FILE 0x80000 /* set:pagecache, unset:swap */ /* * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it. * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use * the KRE/URE bits to watch for it. That way we don't need to overload the * KWE/UWE bits with both handling dirty and accessed. * * Note that the kernel uses the accessed bit just to check whether to page * out a page or not, so it doesn't have to be exact anyway. */ #define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE) #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE) #define _PFN_MASK 0xFFFFFFFF00000000UL #define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS) #define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS) /* * All the normal masks have the "page accessed" bits on, as any time they are used, * the page is accessed. They are cleared only by the page-out routines */ #define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE) #define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS) #define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) #define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) #define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE) #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x)) #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW)) #define _PAGE_S(x) _PAGE_NORMAL(x) /* * The hardware can handle write-only mappings, but as the Alpha * architecture does byte-wide writes with a read-modify-write * sequence, it's not practical to have write-without-read privs. * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in * arch/alpha/mm/fault.c) */ /* xwr */ #define __P000 _PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) #define __P001 _PAGE_P(_PAGE_FOE | _PAGE_FOW) #define __P010 _PAGE_P(_PAGE_FOE) #define __P011 _PAGE_P(_PAGE_FOE) #define __P100 _PAGE_P(_PAGE_FOW | _PAGE_FOR) #define __P101 _PAGE_P(_PAGE_FOW) #define __P110 _PAGE_P(0) #define __P111 _PAGE_P(0) #define __S000 _PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) #define __S001 _PAGE_S(_PAGE_FOE | _PAGE_FOW) #define __S010 _PAGE_S(_PAGE_FOE) #define __S011 _PAGE_S(_PAGE_FOE) #define __S100 _PAGE_S(_PAGE_FOW | _PAGE_FOR) #define __S101 _PAGE_S(_PAGE_FOW) #define __S110 _PAGE_S(0) #define __S111 _PAGE_S(0) /* * pgprot_noncached() is only for infiniband pci support, and a real * implementation for RAM would be more complicated. */ #define pgprot_noncached(prot) (prot) /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pmd_t * __bad_pagetable(void); extern unsigned long __zero_page(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE(vaddr) (virt_to_page(ZERO_PGE)) /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) /* * On certain platforms whose physical address space can overlap KSEG, * namely EV6 and above, we must re-twiddle the physaddr to restore the * correct high-order bits. * * This is extremely confusing until you realize that this is actually * just working around a userspace bug. The X server was intending to * provide the physical address but instead provided the KSEG address. * Or tried to, except it's not representable. * * On Tsunami there's nothing meaningful at 0x40000000000, so this is * a safe thing to do. Come the first core logic that does put something * in this area -- memory or whathaveyou -- then this hack will have * to go away. So be prepared! */ #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG) #error "EV6-only feature in a generic kernel" #endif #if defined(CONFIG_ALPHA_GENERIC) || \ (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG)) #define KSEG_PFN (0xc0000000000UL >> PAGE_SHIFT) #define PHYS_TWIDDLE(pfn) \ ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \ ? ((pfn) ^= KSEG_PFN) : (pfn)) #else #define PHYS_TWIDDLE(pfn) (pfn) #endif /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #ifndef CONFIG_DISCONTIGMEM #define page_to_pa(page) (((page) - mem_map) << PAGE_SHIFT) #define pte_pfn(pte) (pte_val(pte) >> 32) #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define mk_pte(page, pgprot) \ ({ \ pte_t pte; \ \ pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot); \ pte; \ }) #endif extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot) { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) { pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } extern inline unsigned long pmd_page_vaddr(pmd_t pmd) { return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET; } #ifndef CONFIG_DISCONTIGMEM #define pmd_page(pmd) (mem_map + ((pmd_val(pmd) & _PFN_MASK) >> 32)) #define pgd_page(pgd) (mem_map + ((pgd_val(pgd) & _PFN_MASK) >> 32)) #endif extern inline unsigned long pgd_page_vaddr(pgd_t pgd) { return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); } extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_val(*ptep) = 0; } extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); } extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; } extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; } extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); } extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE; } extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; } extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } extern inline int pte_special(pte_t pte) { return 0; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; } extern inline pte_t pte_mkspecial(pte_t pte) { return pte; } #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) /* to find an entry in a page-table-directory. */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* * The smp_read_barrier_depends() in the following functions are required to * order the load of *dir (the pointer in the top level page table) with any * subsequent load of the returned pmd_t *ret (ret is data dependent on *dir). * * If this ordering is not enforced, the CPU might load an older value of * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for * more details. * * Note that we never change the mm->pgd pointer after the task is running, so * pgd_offset does not require such a barrier. */ /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { pmd_t *ret = (pmd_t *) pgd_page_vaddr(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1)); smp_read_barrier_depends(); /* see above */ return ret; } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address) { pte_t *ret = (pte_t *) pmd_page_vaddr(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1)); smp_read_barrier_depends(); /* see above */ return ret; } #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) #define pte_unmap(pte) do { } while (0) extern pgd_t swapper_pg_dir[1024]; /* * The Alpha doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ extern inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep) { } /* * Non-present pages: high 24 bits are offset, next 8 bits type, * low 32 bits zero. */ extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } #define __swp_type(x) (((x).val >> 32) & 0xff) #define __swp_offset(x) ((x).val >> 40) #define __swp_entry(type, off) ((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define pte_to_pgoff(pte) (pte_val(pte) >> 32) #define pgoff_to_pte(off) ((pte_t) { ((off) << 32) | _PAGE_FILE }) #define PTE_FILE_MAX_BITS 32 #ifndef CONFIG_DISCONTIGMEM #define kern_addr_valid(addr) (1) #endif #define io_remap_pfn_range(vma, start, pfn, size, prot) \ remap_pfn_range(vma, start, pfn, size, prot) #define pte_ERROR(e) \ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) extern void paging_init(void); #include /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT. */ #define HAVE_ARCH_UNMAPPED_AREA #endif /* _ALPHA_PGTABLE_H */