aboutsummaryrefslogtreecommitdiff
path: root/arch/s390/lib/uaccess.c
AgeCommit message (Collapse)Author
2016-08-27s390/uaccess: Enable hardened usercopyKees Cook
Enables CONFIG_HARDENED_USERCOPY checks on s390. Signed-off-by: Kees Cook <keescook@chromium.org> (cherry picked from commit 97433ea4fda62349bfa42089455593cbcb57e06c) Signed-off-by: Alex Shi <alex.shi@linaro.org>
2015-09-03Merge branch 'locking-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking and atomic updates from Ingo Molnar: "Main changes in this cycle are: - Extend atomic primitives with coherent logic op primitives (atomic_{or,and,xor}()) and deprecate the old partial APIs (atomic_{set,clear}_mask()) The old ops were incoherent with incompatible signatures across architectures and with incomplete support. Now every architecture supports the primitives consistently (by Peter Zijlstra) - Generic support for 'relaxed atomics': - _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return() - atomic_read_acquire() - atomic_set_release() This came out of porting qwrlock code to arm64 (by Will Deacon) - Clean up the fragile static_key APIs that were causing repeat bugs, by introducing a new one: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. To be able to know the 'type' of the static key we encode it in the jump entry (by Peter Zijlstra) - Static key self-tests (by Jason Baron) - qrwlock optimizations (by Waiman Long) - small futex enhancements (by Davidlohr Bueso) - ... and misc other changes" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits) jump_label/x86: Work around asm build bug on older/backported GCCs locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics locking/qrwlock: Implement queue_write_unlock() using smp_store_release() locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t' locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic locking/static_keys: Make verify_keys() static jump label, locking/static_keys: Update docs locking/static_keys: Provide a selftest jump_label: Provide a self-test s390/uaccess, locking/static_keys: employ static_branch_likely() x86, tsc, locking/static_keys: Employ static_branch_likely() locking/static_keys: Add selftest locking/static_keys: Add a new static_key interface locking/static_keys: Rework update logic locking/static_keys: Add static_key_{en,dis}able() helpers ...
2015-08-19s390/uaccess: remove uaccess_primary kernel parameterHeiko Carstens
get_user() and put_user() are inline functions in the meantime again. Both will generate the mvcos instruction if compiled with -march=z10 (or greater). The kernel parameter "uaccess_primary" can only change the behavior of out-of-line uaccess functions like copy_from_user() to not use the mvcos instruction, but not for the above named inlined functions. Therefore it is quite useless and the parameter can be removed. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-08-03s390/uaccess, locking/static_keys: employ static_branch_likely()Heiko Carstens
Use the new static_branch_likely() primitive to make sure that the most likely case is executed without taking an unconditional branch. This wasn't possible with the old jump label primitives. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150729064600.GB3953@osiris Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-25s390: remove 31 bit supportHeiko Carstens
Remove the 31 bit support in order to reduce maintenance cost and effectively remove dead code. Since a couple of years there is no distribution left that comes with a 31 bit kernel. The 31 bit kernel also has been broken since more than a year before anybody noticed. In addition I added a removal warning to the kernel shown at ipl for 5 minutes: a960062e5826 ("s390: add 31 bit warning message") which let everybody know about the plan to remove 31 bit code. We didn't get any response. Given that the last 31 bit only machine was introduced in 1999 let's remove the code. Anybody with 31 bit user space code can still use the compat mode. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-05-20s390/uaccess: simplify control register updatesMartin Schwidefsky
Always switch to the kernel ASCE in switch_mm. Load the secondary space ASCE in finish_arch_post_lock_switch after checking that any pending page table operations have completed. The primary ASCE is loaded in entry[64].S. With this the update_primary_asce call can be removed from the switch_to macro and from the start of switch_mm function. Remove the load_primary argument from update_user_asce/clear_user_asce, rename update_user_asce to set_user_asce and rename update_primary_asce to load_kernel_asce. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-04-11s390/uaccess: fix possible register corruption in strnlen_user_srst()Heiko Carstens
The whole point of the out-of-line strnlen_user_srst() function was to avoid corruption of register 0 due to register asm assignment. However 'somebody' :) forgot to remove the update_primary_asce() function call, which may clobber register 0 contents. So let's remove that call and also move the size check to the calling function. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-04-03s390/uaccess: rework uaccess code - fix locking issuesHeiko Carstens
The current uaccess code uses a page table walk in some circumstances, e.g. in case of the in atomic futex operations or if running on old hardware which doesn't support the mvcos instruction. However it turned out that the page table walk code does not correctly lock page tables when accessing page table entries. In other words: a different cpu may invalidate a page table entry while the current cpu inspects the pte. This may lead to random data corruption. Adding correct locking however isn't trivial for all uaccess operations. Especially copy_in_user() is problematic since that requires to hold at least two locks, but must be protected against ABBA deadlock when a different cpu also performs a copy_in_user() operation. So the solution is a different approach where we change address spaces: User space runs in primary address mode, or access register mode within vdso code, like it currently already does. The kernel usually also runs in home space mode, however when accessing user space the kernel switches to primary or secondary address mode if the mvcos instruction is not available or if a compare-and-swap (futex) instruction on a user space address is performed. KVM however is special, since that requires the kernel to run in home address space while implicitly accessing user space with the sie instruction. So we end up with: User space: - runs in primary or access register mode - cr1 contains the user asce - cr7 contains the user asce - cr13 contains the kernel asce Kernel space: - runs in home space mode - cr1 contains the user or kernel asce -> the kernel asce is loaded when a uaccess requires primary or secondary address mode - cr7 contains the user or kernel asce, (changed with set_fs()) - cr13 contains the kernel asce In case of uaccess the kernel changes to: - primary space mode in case of a uaccess (copy_to_user) and uses e.g. the mvcp instruction to access user space. However the kernel will stay in home space mode if the mvcos instruction is available - secondary space mode in case of futex atomic operations, so that the instructions come from primary address space and data from secondary space In case of kvm the kernel runs in home space mode, but cr1 gets switched to contain the gmap asce before the sie instruction gets executed. When the sie instruction is finished cr1 will be switched back to contain the user asce. A context switch between two processes will always load the kernel asce for the next process in cr1. So the first exit to user space is a bit more expensive (one extra load control register instruction) than before, however keeps the code rather simple. In sum this means there is no need to perform any error prone page table walks anymore when accessing user space. The patch seems to be rather large, however it mainly removes the the page table walk code and restores the previously deleted "standard" uaccess code, with a couple of changes. The uaccess without mvcos mode can be enforced with the "uaccess_primary" kernel parameter. Reported-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>