aboutsummaryrefslogtreecommitdiff
path: root/include/net/cfg80211.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/net/cfg80211.h')
-rw-r--r--include/net/cfg80211.h220
1 files changed, 198 insertions, 22 deletions
diff --git a/include/net/cfg80211.h b/include/net/cfg80211.h
index 26b5b692c22b..d9681a288ce6 100644
--- a/include/net/cfg80211.h
+++ b/include/net/cfg80211.h
@@ -2254,22 +2254,28 @@ struct cfg80211_ops {
* enum wiphy_flags - wiphy capability flags
*
* @WIPHY_FLAG_CUSTOM_REGULATORY: tells us the driver for this device
- * has its own custom regulatory domain and cannot identify the
- * ISO / IEC 3166 alpha2 it belongs to. When this is enabled
- * we will disregard the first regulatory hint (when the
- * initiator is %REGDOM_SET_BY_CORE).
- * @WIPHY_FLAG_STRICT_REGULATORY: tells us the driver for this device will
- * ignore regulatory domain settings until it gets its own regulatory
- * domain via its regulatory_hint() unless the regulatory hint is
- * from a country IE. After its gets its own regulatory domain it will
- * only allow further regulatory domain settings to further enhance
- * compliance. For example if channel 13 and 14 are disabled by this
- * regulatory domain no user regulatory domain can enable these channels
- * at a later time. This can be used for devices which do not have
- * calibration information guaranteed for frequencies or settings
- * outside of its regulatory domain. If used in combination with
- * WIPHY_FLAG_CUSTOM_REGULATORY the inspected country IE power settings
- * will be followed.
+ * has its own custom regulatory domain and cannot identify the
+ * ISO / IEC 3166 alpha2 it belongs to. When this is enabled
+ * we will disregard the first regulatory hint (when the
+ * initiator is %REGDOM_SET_BY_CORE). wiphys can set the custom
+ * regulatory domain using wiphy_apply_custom_regulatory()
+ * prior to wiphy registration.
+ * @WIPHY_FLAG_STRICT_REGULATORY: tells us that the wiphy for this device
+ * has regulatory domain that it wishes to be considered as the
+ * superset for regulatory rules. After this device gets its regulatory
+ * domain programmed further regulatory hints shall only be considered
+ * for this device to enhance regulatory compliance, forcing the
+ * device to only possibly use subsets of the original regulatory
+ * rules. For example if channel 13 and 14 are disabled by this
+ * device's regulatory domain no user specified regulatory hint which
+ * has these channels enabled would enable them for this wiphy,
+ * the device's original regulatory domain will be trusted as the
+ * base. You can program the superset of regulatory rules for this
+ * wiphy with regulatory_hint() for cards programmed with an
+ * ISO3166-alpha2 country code. wiphys that use regulatory_hint()
+ * will have their wiphy->regd programmed once the regulatory
+ * domain is set, and all other regulatory hints will be ignored
+ * until their own regulatory domain gets programmed.
* @WIPHY_FLAG_DISABLE_BEACON_HINTS: enable this if your driver needs to ensure
* that passive scan flags and beaconing flags may not be lifted by
* cfg80211 due to regulatory beacon hints. For more information on beacon
@@ -2467,6 +2473,34 @@ struct wiphy_wowlan_support {
};
/**
+ * enum wiphy_vendor_command_flags - validation flags for vendor commands
+ * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
+ * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
+ * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
+ * (must be combined with %_WDEV or %_NETDEV)
+ */
+enum wiphy_vendor_command_flags {
+ WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
+ WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
+ WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
+};
+
+/**
+ * struct wiphy_vendor_command - vendor command definition
+ * @info: vendor command identifying information, as used in nl80211
+ * @flags: flags, see &enum wiphy_vendor_command_flags
+ * @doit: callback for the operation, note that wdev is %NULL if the
+ * flags didn't ask for a wdev and non-%NULL otherwise; the data
+ * pointer may be %NULL if userspace provided no data at all
+ */
+struct wiphy_vendor_command {
+ struct nl80211_vendor_cmd_info info;
+ u32 flags;
+ int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
+ const void *data, int data_len);
+};
+
+/**
* struct wiphy - wireless hardware description
* @reg_notifier: the driver's regulatory notification callback,
* note that if your driver uses wiphy_apply_custom_regulatory()
@@ -2573,6 +2607,12 @@ struct wiphy_wowlan_support {
* 802.11-2012 8.4.2.29 for the defined fields.
* @extended_capabilities_mask: mask of the valid values
* @extended_capabilities_len: length of the extended capabilities
+ * @country_ie_pref: country IE processing preferences specified
+ * by enum nl80211_country_ie_pref
+ * @vendor_commands: array of vendor commands supported by the hardware
+ * @n_vendor_commands: number of vendor commands
+ * @vendor_events: array of vendor events supported by the hardware
+ * @n_vendor_events: number of vendor events
*/
struct wiphy {
/* assign these fields before you register the wiphy */
@@ -2642,6 +2682,8 @@ struct wiphy {
const u8 *extended_capabilities, *extended_capabilities_mask;
u8 extended_capabilities_len;
+ u8 country_ie_pref;
+
/* If multiple wiphys are registered and you're handed e.g.
* a regular netdev with assigned ieee80211_ptr, you won't
* know whether it points to a wiphy your driver has registered
@@ -2681,6 +2723,10 @@ struct wiphy {
const struct iw_handler_def *wext;
#endif
+ const struct wiphy_vendor_command *vendor_commands;
+ const struct nl80211_vendor_cmd_info *vendor_events;
+ int n_vendor_commands, n_vendor_events;
+
char priv[0] __aligned(NETDEV_ALIGN);
};
@@ -3591,6 +3637,121 @@ void wiphy_rfkill_start_polling(struct wiphy *wiphy);
*/
void wiphy_rfkill_stop_polling(struct wiphy *wiphy);
+/**
+ * DOC: Vendor commands
+ *
+ * Occasionally, there are special protocol or firmware features that
+ * can't be implemented very openly. For this and similar cases, the
+ * vendor command functionality allows implementing the features with
+ * (typically closed-source) userspace and firmware, using nl80211 as
+ * the configuration mechanism.
+ *
+ * A driver supporting vendor commands must register them as an array
+ * in struct wiphy, with handlers for each one, each command has an
+ * OUI and sub command ID to identify it.
+ *
+ * Note that this feature should not be (ab)used to implement protocol
+ * features that could openly be shared across drivers. In particular,
+ * it must never be required to use vendor commands to implement any
+ * "normal" functionality that higher-level userspace like connection
+ * managers etc. need.
+ */
+
+struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
+ enum nl80211_commands cmd,
+ enum nl80211_attrs attr,
+ int approxlen);
+
+struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
+ enum nl80211_commands cmd,
+ enum nl80211_attrs attr,
+ int vendor_event_idx,
+ int approxlen, gfp_t gfp);
+
+void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
+
+/**
+ * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
+ * @wiphy: the wiphy
+ * @approxlen: an upper bound of the length of the data that will
+ * be put into the skb
+ *
+ * This function allocates and pre-fills an skb for a reply to
+ * a vendor command. Since it is intended for a reply, calling
+ * it outside of a vendor command's doit() operation is invalid.
+ *
+ * The returned skb is pre-filled with some identifying data in
+ * a way that any data that is put into the skb (with skb_put(),
+ * nla_put() or similar) will end up being within the
+ * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
+ * with the skb is adding data for the corresponding userspace tool
+ * which can then read that data out of the testdata attribute. You
+ * must not modify the skb in any other way.
+ *
+ * When done, call cfg80211_vendor_cmd_reply() with the skb and return
+ * its error code as the result of the doit() operation.
+ *
+ * Return: An allocated and pre-filled skb. %NULL if any errors happen.
+ */
+static inline struct sk_buff *
+cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
+{
+ return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
+ NL80211_ATTR_VENDOR_DATA, approxlen);
+}
+
+/**
+ * cfg80211_vendor_cmd_reply - send the reply skb
+ * @skb: The skb, must have been allocated with
+ * cfg80211_vendor_cmd_alloc_reply_skb()
+ *
+ * Since calling this function will usually be the last thing
+ * before returning from the vendor command doit() you should
+ * return the error code. Note that this function consumes the
+ * skb regardless of the return value.
+ *
+ * Return: An error code or 0 on success.
+ */
+int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
+
+/**
+ * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
+ * @wiphy: the wiphy
+ * @event_idx: index of the vendor event in the wiphy's vendor_events
+ * @approxlen: an upper bound of the length of the data that will
+ * be put into the skb
+ * @gfp: allocation flags
+ *
+ * This function allocates and pre-fills an skb for an event on the
+ * vendor-specific multicast group.
+ *
+ * When done filling the skb, call cfg80211_vendor_event() with the
+ * skb to send the event.
+ *
+ * Return: An allocated and pre-filled skb. %NULL if any errors happen.
+ */
+static inline struct sk_buff *
+cfg80211_vendor_event_alloc(struct wiphy *wiphy, int approxlen,
+ int event_idx, gfp_t gfp)
+{
+ return __cfg80211_alloc_event_skb(wiphy, NL80211_CMD_VENDOR,
+ NL80211_ATTR_VENDOR_DATA,
+ event_idx, approxlen, gfp);
+}
+
+/**
+ * cfg80211_vendor_event - send the event
+ * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
+ * @gfp: allocation flags
+ *
+ * This function sends the given @skb, which must have been allocated
+ * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
+ */
+static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
+{
+ __cfg80211_send_event_skb(skb, gfp);
+}
+
#ifdef CONFIG_NL80211_TESTMODE
/**
* DOC: Test mode
@@ -3626,8 +3787,12 @@ void wiphy_rfkill_stop_polling(struct wiphy *wiphy);
*
* Return: An allocated and pre-filled skb. %NULL if any errors happen.
*/
-struct sk_buff *cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy,
- int approxlen);
+static inline struct sk_buff *
+cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
+{
+ return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
+ NL80211_ATTR_TESTDATA, approxlen);
+}
/**
* cfg80211_testmode_reply - send the reply skb
@@ -3641,7 +3806,10 @@ struct sk_buff *cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy,
*
* Return: An error code or 0 on success.
*/
-int cfg80211_testmode_reply(struct sk_buff *skb);
+static inline int cfg80211_testmode_reply(struct sk_buff *skb)
+{
+ return cfg80211_vendor_cmd_reply(skb);
+}
/**
* cfg80211_testmode_alloc_event_skb - allocate testmode event
@@ -3664,8 +3832,13 @@ int cfg80211_testmode_reply(struct sk_buff *skb);
*
* Return: An allocated and pre-filled skb. %NULL if any errors happen.
*/
-struct sk_buff *cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy,
- int approxlen, gfp_t gfp);
+static inline struct sk_buff *
+cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
+{
+ return __cfg80211_alloc_event_skb(wiphy, NL80211_CMD_TESTMODE,
+ NL80211_ATTR_TESTDATA, -1,
+ approxlen, gfp);
+}
/**
* cfg80211_testmode_event - send the event
@@ -3677,7 +3850,10 @@ struct sk_buff *cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy,
* by cfg80211_testmode_alloc_event_skb(), as an event. It always
* consumes it.
*/
-void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp);
+static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
+{
+ __cfg80211_send_event_skb(skb, gfp);
+}
#define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd),
#define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd),