aboutsummaryrefslogtreecommitdiff
path: root/include/linux/hash.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/hash.h')
-rw-r--r--include/linux/hash.h20
1 files changed, 18 insertions, 2 deletions
diff --git a/include/linux/hash.h b/include/linux/hash.h
index 1afde47e1528..79c52fa81cac 100644
--- a/include/linux/hash.h
+++ b/include/linux/hash.h
@@ -32,12 +32,28 @@
#error Wordsize not 32 or 64
#endif
+/*
+ * The above primes are actively bad for hashing, since they are
+ * too sparse. The 32-bit one is mostly ok, the 64-bit one causes
+ * real problems. Besides, the "prime" part is pointless for the
+ * multiplicative hash.
+ *
+ * Although a random odd number will do, it turns out that the golden
+ * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice
+ * properties.
+ *
+ * These are the negative, (1 - phi) = (phi^2) = (3 - sqrt(5))/2.
+ * (See Knuth vol 3, section 6.4, exercise 9.)
+ */
+#define GOLDEN_RATIO_32 0x61C88647
+#define GOLDEN_RATIO_64 0x61C8864680B583EBull
+
static __always_inline u64 hash_64(u64 val, unsigned int bits)
{
u64 hash = val;
-#if defined(CONFIG_ARCH_HAS_FAST_MULTIPLIER) && BITS_PER_LONG == 64
- hash = hash * GOLDEN_RATIO_PRIME_64;
+#if BITS_PER_LONG == 64
+ hash = hash * GOLDEN_RATIO_64;
#else
/* Sigh, gcc can't optimise this alone like it does for 32 bits. */
u64 n = hash;