aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/defxx.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/defxx.c')
-rw-r--r--drivers/net/defxx.c3739
1 files changed, 0 insertions, 3739 deletions
diff --git a/drivers/net/defxx.c b/drivers/net/defxx.c
deleted file mode 100644
index 417e14385623..000000000000
--- a/drivers/net/defxx.c
+++ /dev/null
@@ -1,3739 +0,0 @@
-/*
- * File Name:
- * defxx.c
- *
- * Copyright Information:
- * Copyright Digital Equipment Corporation 1996.
- *
- * This software may be used and distributed according to the terms of
- * the GNU General Public License, incorporated herein by reference.
- *
- * Abstract:
- * A Linux device driver supporting the Digital Equipment Corporation
- * FDDI TURBOchannel, EISA and PCI controller families. Supported
- * adapters include:
- *
- * DEC FDDIcontroller/TURBOchannel (DEFTA)
- * DEC FDDIcontroller/EISA (DEFEA)
- * DEC FDDIcontroller/PCI (DEFPA)
- *
- * The original author:
- * LVS Lawrence V. Stefani <lstefani@yahoo.com>
- *
- * Maintainers:
- * macro Maciej W. Rozycki <macro@linux-mips.org>
- *
- * Credits:
- * I'd like to thank Patricia Cross for helping me get started with
- * Linux, David Davies for a lot of help upgrading and configuring
- * my development system and for answering many OS and driver
- * development questions, and Alan Cox for recommendations and
- * integration help on getting FDDI support into Linux. LVS
- *
- * Driver Architecture:
- * The driver architecture is largely based on previous driver work
- * for other operating systems. The upper edge interface and
- * functions were largely taken from existing Linux device drivers
- * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
- * driver.
- *
- * Adapter Probe -
- * The driver scans for supported EISA adapters by reading the
- * SLOT ID register for each EISA slot and making a match
- * against the expected value.
- *
- * Bus-Specific Initialization -
- * This driver currently supports both EISA and PCI controller
- * families. While the custom DMA chip and FDDI logic is similar
- * or identical, the bus logic is very different. After
- * initialization, the only bus-specific differences is in how the
- * driver enables and disables interrupts. Other than that, the
- * run-time critical code behaves the same on both families.
- * It's important to note that both adapter families are configured
- * to I/O map, rather than memory map, the adapter registers.
- *
- * Driver Open/Close -
- * In the driver open routine, the driver ISR (interrupt service
- * routine) is registered and the adapter is brought to an
- * operational state. In the driver close routine, the opposite
- * occurs; the driver ISR is deregistered and the adapter is
- * brought to a safe, but closed state. Users may use consecutive
- * commands to bring the adapter up and down as in the following
- * example:
- * ifconfig fddi0 up
- * ifconfig fddi0 down
- * ifconfig fddi0 up
- *
- * Driver Shutdown -
- * Apparently, there is no shutdown or halt routine support under
- * Linux. This routine would be called during "reboot" or
- * "shutdown" to allow the driver to place the adapter in a safe
- * state before a warm reboot occurs. To be really safe, the user
- * should close the adapter before shutdown (eg. ifconfig fddi0 down)
- * to ensure that the adapter DMA engine is taken off-line. However,
- * the current driver code anticipates this problem and always issues
- * a soft reset of the adapter at the beginning of driver initialization.
- * A future driver enhancement in this area may occur in 2.1.X where
- * Alan indicated that a shutdown handler may be implemented.
- *
- * Interrupt Service Routine -
- * The driver supports shared interrupts, so the ISR is registered for
- * each board with the appropriate flag and the pointer to that board's
- * device structure. This provides the context during interrupt
- * processing to support shared interrupts and multiple boards.
- *
- * Interrupt enabling/disabling can occur at many levels. At the host
- * end, you can disable system interrupts, or disable interrupts at the
- * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
- * have a bus-logic chip interrupt enable/disable as well as a DMA
- * controller interrupt enable/disable.
- *
- * The driver currently enables and disables adapter interrupts at the
- * bus-logic chip and assumes that Linux will take care of clearing or
- * acknowledging any host-based interrupt chips.
- *
- * Control Functions -
- * Control functions are those used to support functions such as adding
- * or deleting multicast addresses, enabling or disabling packet
- * reception filters, or other custom/proprietary commands. Presently,
- * the driver supports the "get statistics", "set multicast list", and
- * "set mac address" functions defined by Linux. A list of possible
- * enhancements include:
- *
- * - Custom ioctl interface for executing port interface commands
- * - Custom ioctl interface for adding unicast addresses to
- * adapter CAM (to support bridge functions).
- * - Custom ioctl interface for supporting firmware upgrades.
- *
- * Hardware (port interface) Support Routines -
- * The driver function names that start with "dfx_hw_" represent
- * low-level port interface routines that are called frequently. They
- * include issuing a DMA or port control command to the adapter,
- * resetting the adapter, or reading the adapter state. Since the
- * driver initialization and run-time code must make calls into the
- * port interface, these routines were written to be as generic and
- * usable as possible.
- *
- * Receive Path -
- * The adapter DMA engine supports a 256 entry receive descriptor block
- * of which up to 255 entries can be used at any given time. The
- * architecture is a standard producer, consumer, completion model in
- * which the driver "produces" receive buffers to the adapter, the
- * adapter "consumes" the receive buffers by DMAing incoming packet data,
- * and the driver "completes" the receive buffers by servicing the
- * incoming packet, then "produces" a new buffer and starts the cycle
- * again. Receive buffers can be fragmented in up to 16 fragments
- * (descriptor entries). For simplicity, this driver posts
- * single-fragment receive buffers of 4608 bytes, then allocates a
- * sk_buff, copies the data, then reposts the buffer. To reduce CPU
- * utilization, a better approach would be to pass up the receive
- * buffer (no extra copy) then allocate and post a replacement buffer.
- * This is a performance enhancement that should be looked into at
- * some point.
- *
- * Transmit Path -
- * Like the receive path, the adapter DMA engine supports a 256 entry
- * transmit descriptor block of which up to 255 entries can be used at
- * any given time. Transmit buffers can be fragmented in up to 255
- * fragments (descriptor entries). This driver always posts one
- * fragment per transmit packet request.
- *
- * The fragment contains the entire packet from FC to end of data.
- * Before posting the buffer to the adapter, the driver sets a three-byte
- * packet request header (PRH) which is required by the Motorola MAC chip
- * used on the adapters. The PRH tells the MAC the type of token to
- * receive/send, whether or not to generate and append the CRC, whether
- * synchronous or asynchronous framing is used, etc. Since the PRH
- * definition is not necessarily consistent across all FDDI chipsets,
- * the driver, rather than the common FDDI packet handler routines,
- * sets these bytes.
- *
- * To reduce the amount of descriptor fetches needed per transmit request,
- * the driver takes advantage of the fact that there are at least three
- * bytes available before the skb->data field on the outgoing transmit
- * request. This is guaranteed by having fddi_setup() in net_init.c set
- * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
- * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
- * bytes which we'll use to store the PRH.
- *
- * There's a subtle advantage to adding these pad bytes to the
- * hard_header_len, it ensures that the data portion of the packet for
- * an 802.2 SNAP frame is longword aligned. Other FDDI driver
- * implementations may not need the extra padding and can start copying
- * or DMAing directly from the FC byte which starts at skb->data. Should
- * another driver implementation need ADDITIONAL padding, the net_init.c
- * module should be updated and dev->hard_header_len should be increased.
- * NOTE: To maintain the alignment on the data portion of the packet,
- * dev->hard_header_len should always be evenly divisible by 4 and at
- * least 24 bytes in size.
- *
- * Modification History:
- * Date Name Description
- * 16-Aug-96 LVS Created.
- * 20-Aug-96 LVS Updated dfx_probe so that version information
- * string is only displayed if 1 or more cards are
- * found. Changed dfx_rcv_queue_process to copy
- * 3 NULL bytes before FC to ensure that data is
- * longword aligned in receive buffer.
- * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
- * LLC group promiscuous mode if multicast list
- * is too large. LLC individual/group promiscuous
- * mode is now disabled if IFF_PROMISC flag not set.
- * dfx_xmt_queue_pkt no longer checks for NULL skb
- * on Alan Cox recommendation. Added node address
- * override support.
- * 12-Sep-96 LVS Reset current address to factory address during
- * device open. Updated transmit path to post a
- * single fragment which includes PRH->end of data.
- * Mar 2000 AC Did various cleanups for 2.3.x
- * Jun 2000 jgarzik PCI and resource alloc cleanups
- * Jul 2000 tjeerd Much cleanup and some bug fixes
- * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
- * Feb 2001 Skb allocation fixes
- * Feb 2001 davej PCI enable cleanups.
- * 04 Aug 2003 macro Converted to the DMA API.
- * 14 Aug 2004 macro Fix device names reported.
- * 14 Jun 2005 macro Use irqreturn_t.
- * 23 Oct 2006 macro Big-endian host support.
- * 14 Dec 2006 macro TURBOchannel support.
- */
-
-/* Include files */
-#include <linux/bitops.h>
-#include <linux/compiler.h>
-#include <linux/delay.h>
-#include <linux/dma-mapping.h>
-#include <linux/eisa.h>
-#include <linux/errno.h>
-#include <linux/fddidevice.h>
-#include <linux/init.h>
-#include <linux/interrupt.h>
-#include <linux/ioport.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/netdevice.h>
-#include <linux/pci.h>
-#include <linux/skbuff.h>
-#include <linux/slab.h>
-#include <linux/string.h>
-#include <linux/tc.h>
-
-#include <asm/byteorder.h>
-#include <asm/io.h>
-
-#include "defxx.h"
-
-/* Version information string should be updated prior to each new release! */
-#define DRV_NAME "defxx"
-#define DRV_VERSION "v1.10"
-#define DRV_RELDATE "2006/12/14"
-
-static char version[] __devinitdata =
- DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
- " Lawrence V. Stefani and others\n";
-
-#define DYNAMIC_BUFFERS 1
-
-#define SKBUFF_RX_COPYBREAK 200
-/*
- * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
- * alignment for compatibility with old EISA boards.
- */
-#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
-
-#ifdef CONFIG_PCI
-#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
-#else
-#define DFX_BUS_PCI(dev) 0
-#endif
-
-#ifdef CONFIG_EISA
-#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
-#else
-#define DFX_BUS_EISA(dev) 0
-#endif
-
-#ifdef CONFIG_TC
-#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
-#else
-#define DFX_BUS_TC(dev) 0
-#endif
-
-#ifdef CONFIG_DEFXX_MMIO
-#define DFX_MMIO 1
-#else
-#define DFX_MMIO 0
-#endif
-
-/* Define module-wide (static) routines */
-
-static void dfx_bus_init(struct net_device *dev);
-static void dfx_bus_uninit(struct net_device *dev);
-static void dfx_bus_config_check(DFX_board_t *bp);
-
-static int dfx_driver_init(struct net_device *dev,
- const char *print_name,
- resource_size_t bar_start);
-static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
-
-static int dfx_open(struct net_device *dev);
-static int dfx_close(struct net_device *dev);
-
-static void dfx_int_pr_halt_id(DFX_board_t *bp);
-static void dfx_int_type_0_process(DFX_board_t *bp);
-static void dfx_int_common(struct net_device *dev);
-static irqreturn_t dfx_interrupt(int irq, void *dev_id);
-
-static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
-static void dfx_ctl_set_multicast_list(struct net_device *dev);
-static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
-static int dfx_ctl_update_cam(DFX_board_t *bp);
-static int dfx_ctl_update_filters(DFX_board_t *bp);
-
-static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
-static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
-static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
-static int dfx_hw_adap_state_rd(DFX_board_t *bp);
-static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
-
-static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
-static void dfx_rcv_queue_process(DFX_board_t *bp);
-static void dfx_rcv_flush(DFX_board_t *bp);
-
-static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
- struct net_device *dev);
-static int dfx_xmt_done(DFX_board_t *bp);
-static void dfx_xmt_flush(DFX_board_t *bp);
-
-/* Define module-wide (static) variables */
-
-static struct pci_driver dfx_pci_driver;
-static struct eisa_driver dfx_eisa_driver;
-static struct tc_driver dfx_tc_driver;
-
-
-/*
- * =======================
- * = dfx_port_write_long =
- * = dfx_port_read_long =
- * =======================
- *
- * Overview:
- * Routines for reading and writing values from/to adapter
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- * offset - register offset from base I/O address
- * data - for dfx_port_write_long, this is a value to write;
- * for dfx_port_read_long, this is a pointer to store
- * the read value
- *
- * Functional Description:
- * These routines perform the correct operation to read or write
- * the adapter register.
- *
- * EISA port block base addresses are based on the slot number in which the
- * controller is installed. For example, if the EISA controller is installed
- * in slot 4, the port block base address is 0x4000. If the controller is
- * installed in slot 2, the port block base address is 0x2000, and so on.
- * This port block can be used to access PDQ, ESIC, and DEFEA on-board
- * registers using the register offsets defined in DEFXX.H.
- *
- * PCI port block base addresses are assigned by the PCI BIOS or system
- * firmware. There is one 128 byte port block which can be accessed. It
- * allows for I/O mapping of both PDQ and PFI registers using the register
- * offsets defined in DEFXX.H.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * bp->base is a valid base I/O address for this adapter.
- * offset is a valid register offset for this adapter.
- *
- * Side Effects:
- * Rather than produce macros for these functions, these routines
- * are defined using "inline" to ensure that the compiler will
- * generate inline code and not waste a procedure call and return.
- * This provides all the benefits of macros, but with the
- * advantage of strict data type checking.
- */
-
-static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
-{
- writel(data, bp->base.mem + offset);
- mb();
-}
-
-static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
-{
- outl(data, bp->base.port + offset);
-}
-
-static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
-{
- struct device __maybe_unused *bdev = bp->bus_dev;
- int dfx_bus_tc = DFX_BUS_TC(bdev);
- int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
-
- if (dfx_use_mmio)
- dfx_writel(bp, offset, data);
- else
- dfx_outl(bp, offset, data);
-}
-
-
-static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
-{
- mb();
- *data = readl(bp->base.mem + offset);
-}
-
-static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
-{
- *data = inl(bp->base.port + offset);
-}
-
-static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
-{
- struct device __maybe_unused *bdev = bp->bus_dev;
- int dfx_bus_tc = DFX_BUS_TC(bdev);
- int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
-
- if (dfx_use_mmio)
- dfx_readl(bp, offset, data);
- else
- dfx_inl(bp, offset, data);
-}
-
-
-/*
- * ================
- * = dfx_get_bars =
- * ================
- *
- * Overview:
- * Retrieves the address range used to access control and status
- * registers.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bdev - pointer to device information
- * bar_start - pointer to store the start address
- * bar_len - pointer to store the length of the area
- *
- * Assumptions:
- * I am sure there are some.
- *
- * Side Effects:
- * None
- */
-static void dfx_get_bars(struct device *bdev,
- resource_size_t *bar_start, resource_size_t *bar_len)
-{
- int dfx_bus_pci = DFX_BUS_PCI(bdev);
- int dfx_bus_eisa = DFX_BUS_EISA(bdev);
- int dfx_bus_tc = DFX_BUS_TC(bdev);
- int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
-
- if (dfx_bus_pci) {
- int num = dfx_use_mmio ? 0 : 1;
-
- *bar_start = pci_resource_start(to_pci_dev(bdev), num);
- *bar_len = pci_resource_len(to_pci_dev(bdev), num);
- }
- if (dfx_bus_eisa) {
- unsigned long base_addr = to_eisa_device(bdev)->base_addr;
- resource_size_t bar;
-
- if (dfx_use_mmio) {
- bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
- bar <<= 8;
- bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
- bar <<= 8;
- bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
- bar <<= 16;
- *bar_start = bar;
- bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
- bar <<= 8;
- bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
- bar <<= 8;
- bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
- bar <<= 16;
- *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
- } else {
- *bar_start = base_addr;
- *bar_len = PI_ESIC_K_CSR_IO_LEN;
- }
- }
- if (dfx_bus_tc) {
- *bar_start = to_tc_dev(bdev)->resource.start +
- PI_TC_K_CSR_OFFSET;
- *bar_len = PI_TC_K_CSR_LEN;
- }
-}
-
-static const struct net_device_ops dfx_netdev_ops = {
- .ndo_open = dfx_open,
- .ndo_stop = dfx_close,
- .ndo_start_xmit = dfx_xmt_queue_pkt,
- .ndo_get_stats = dfx_ctl_get_stats,
- .ndo_set_multicast_list = dfx_ctl_set_multicast_list,
- .ndo_set_mac_address = dfx_ctl_set_mac_address,
-};
-
-/*
- * ================
- * = dfx_register =
- * ================
- *
- * Overview:
- * Initializes a supported FDDI controller
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * bdev - pointer to device information
- *
- * Functional Description:
- *
- * Return Codes:
- * 0 - This device (fddi0, fddi1, etc) configured successfully
- * -EBUSY - Failed to get resources, or dfx_driver_init failed.
- *
- * Assumptions:
- * It compiles so it should work :-( (PCI cards do :-)
- *
- * Side Effects:
- * Device structures for FDDI adapters (fddi0, fddi1, etc) are
- * initialized and the board resources are read and stored in
- * the device structure.
- */
-static int __devinit dfx_register(struct device *bdev)
-{
- static int version_disp;
- int dfx_bus_pci = DFX_BUS_PCI(bdev);
- int dfx_bus_tc = DFX_BUS_TC(bdev);
- int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
- const char *print_name = dev_name(bdev);
- struct net_device *dev;
- DFX_board_t *bp; /* board pointer */
- resource_size_t bar_start = 0; /* pointer to port */
- resource_size_t bar_len = 0; /* resource length */
- int alloc_size; /* total buffer size used */
- struct resource *region;
- int err = 0;
-
- if (!version_disp) { /* display version info if adapter is found */
- version_disp = 1; /* set display flag to TRUE so that */
- printk(version); /* we only display this string ONCE */
- }
-
- dev = alloc_fddidev(sizeof(*bp));
- if (!dev) {
- printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
- print_name);
- return -ENOMEM;
- }
-
- /* Enable PCI device. */
- if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
- printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
- print_name);
- goto err_out;
- }
-
- SET_NETDEV_DEV(dev, bdev);
-
- bp = netdev_priv(dev);
- bp->bus_dev = bdev;
- dev_set_drvdata(bdev, dev);
-
- dfx_get_bars(bdev, &bar_start, &bar_len);
-
- if (dfx_use_mmio)
- region = request_mem_region(bar_start, bar_len, print_name);
- else
- region = request_region(bar_start, bar_len, print_name);
- if (!region) {
- printk(KERN_ERR "%s: Cannot reserve I/O resource "
- "0x%lx @ 0x%lx, aborting\n",
- print_name, (long)bar_len, (long)bar_start);
- err = -EBUSY;
- goto err_out_disable;
- }
-
- /* Set up I/O base address. */
- if (dfx_use_mmio) {
- bp->base.mem = ioremap_nocache(bar_start, bar_len);
- if (!bp->base.mem) {
- printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
- err = -ENOMEM;
- goto err_out_region;
- }
- } else {
- bp->base.port = bar_start;
- dev->base_addr = bar_start;
- }
-
- /* Initialize new device structure */
- dev->netdev_ops = &dfx_netdev_ops;
-
- if (dfx_bus_pci)
- pci_set_master(to_pci_dev(bdev));
-
- if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
- err = -ENODEV;
- goto err_out_unmap;
- }
-
- err = register_netdev(dev);
- if (err)
- goto err_out_kfree;
-
- printk("%s: registered as %s\n", print_name, dev->name);
- return 0;
-
-err_out_kfree:
- alloc_size = sizeof(PI_DESCR_BLOCK) +
- PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
-#ifndef DYNAMIC_BUFFERS
- (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
-#endif
- sizeof(PI_CONSUMER_BLOCK) +
- (PI_ALIGN_K_DESC_BLK - 1);
- if (bp->kmalloced)
- dma_free_coherent(bdev, alloc_size,
- bp->kmalloced, bp->kmalloced_dma);
-
-err_out_unmap:
- if (dfx_use_mmio)
- iounmap(bp->base.mem);
-
-err_out_region:
- if (dfx_use_mmio)
- release_mem_region(bar_start, bar_len);
- else
- release_region(bar_start, bar_len);
-
-err_out_disable:
- if (dfx_bus_pci)
- pci_disable_device(to_pci_dev(bdev));
-
-err_out:
- free_netdev(dev);
- return err;
-}
-
-
-/*
- * ================
- * = dfx_bus_init =
- * ================
- *
- * Overview:
- * Initializes the bus-specific controller logic.
- *
- * Returns:
- * None
- *
- * Arguments:
- * dev - pointer to device information
- *
- * Functional Description:
- * Determine and save adapter IRQ in device table,
- * then perform bus-specific logic initialization.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * bp->base has already been set with the proper
- * base I/O address for this device.
- *
- * Side Effects:
- * Interrupts are enabled at the adapter bus-specific logic.
- * Note: Interrupts at the DMA engine (PDQ chip) are not
- * enabled yet.
- */
-
-static void __devinit dfx_bus_init(struct net_device *dev)
-{
- DFX_board_t *bp = netdev_priv(dev);
- struct device *bdev = bp->bus_dev;
- int dfx_bus_pci = DFX_BUS_PCI(bdev);
- int dfx_bus_eisa = DFX_BUS_EISA(bdev);
- int dfx_bus_tc = DFX_BUS_TC(bdev);
- int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
- u8 val;
-
- DBG_printk("In dfx_bus_init...\n");
-
- /* Initialize a pointer back to the net_device struct */
- bp->dev = dev;
-
- /* Initialize adapter based on bus type */
-
- if (dfx_bus_tc)
- dev->irq = to_tc_dev(bdev)->interrupt;
- if (dfx_bus_eisa) {
- unsigned long base_addr = to_eisa_device(bdev)->base_addr;
-
- /* Get the interrupt level from the ESIC chip. */
- val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
- val &= PI_CONFIG_STAT_0_M_IRQ;
- val >>= PI_CONFIG_STAT_0_V_IRQ;
-
- switch (val) {
- case PI_CONFIG_STAT_0_IRQ_K_9:
- dev->irq = 9;
- break;
-
- case PI_CONFIG_STAT_0_IRQ_K_10:
- dev->irq = 10;
- break;
-
- case PI_CONFIG_STAT_0_IRQ_K_11:
- dev->irq = 11;
- break;
-
- case PI_CONFIG_STAT_0_IRQ_K_15:
- dev->irq = 15;
- break;
- }
-
- /*
- * Enable memory decoding (MEMCS0) and/or port decoding
- * (IOCS1/IOCS0) as appropriate in Function Control
- * Register. One of the port chip selects seems to be
- * used for the Burst Holdoff register, but this bit of
- * documentation is missing and as yet it has not been
- * determined which of the two. This is also the reason
- * the size of the decoded port range is twice as large
- * as one required by the PDQ.
- */
-
- /* Set the decode range of the board. */
- val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
- outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
- outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
- outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
- outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
- val = PI_ESIC_K_CSR_IO_LEN - 1;
- outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
- outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
- outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
- outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
-
- /* Enable the decoders. */
- val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
- if (dfx_use_mmio)
- val |= PI_FUNCTION_CNTRL_M_MEMCS0;
- outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
-
- /*
- * Enable access to the rest of the module
- * (including PDQ and packet memory).
- */
- val = PI_SLOT_CNTRL_M_ENB;
- outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
-
- /*
- * Map PDQ registers into memory or port space. This is
- * done with a bit in the Burst Holdoff register.
- */
- val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
- if (dfx_use_mmio)
- val |= PI_BURST_HOLDOFF_V_MEM_MAP;
- else
- val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
- outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
-
- /* Enable interrupts at EISA bus interface chip (ESIC) */
- val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
- val |= PI_CONFIG_STAT_0_M_INT_ENB;
- outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
- }
- if (dfx_bus_pci) {
- struct pci_dev *pdev = to_pci_dev(bdev);
-
- /* Get the interrupt level from the PCI Configuration Table */
-
- dev->irq = pdev->irq;
-
- /* Check Latency Timer and set if less than minimal */
-
- pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
- if (val < PFI_K_LAT_TIMER_MIN) {
- val = PFI_K_LAT_TIMER_DEF;
- pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
- }
-
- /* Enable interrupts at PCI bus interface chip (PFI) */
- val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
- dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
- }
-}
-
-/*
- * ==================
- * = dfx_bus_uninit =
- * ==================
- *
- * Overview:
- * Uninitializes the bus-specific controller logic.
- *
- * Returns:
- * None
- *
- * Arguments:
- * dev - pointer to device information
- *
- * Functional Description:
- * Perform bus-specific logic uninitialization.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * bp->base has already been set with the proper
- * base I/O address for this device.
- *
- * Side Effects:
- * Interrupts are disabled at the adapter bus-specific logic.
- */
-
-static void __devexit dfx_bus_uninit(struct net_device *dev)
-{
- DFX_board_t *bp = netdev_priv(dev);
- struct device *bdev = bp->bus_dev;
- int dfx_bus_pci = DFX_BUS_PCI(bdev);
- int dfx_bus_eisa = DFX_BUS_EISA(bdev);
- u8 val;
-
- DBG_printk("In dfx_bus_uninit...\n");
-
- /* Uninitialize adapter based on bus type */
-
- if (dfx_bus_eisa) {
- unsigned long base_addr = to_eisa_device(bdev)->base_addr;
-
- /* Disable interrupts at EISA bus interface chip (ESIC) */
- val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
- val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
- outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
- }
- if (dfx_bus_pci) {
- /* Disable interrupts at PCI bus interface chip (PFI) */
- dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
- }
-}
-
-
-/*
- * ========================
- * = dfx_bus_config_check =
- * ========================
- *
- * Overview:
- * Checks the configuration (burst size, full-duplex, etc.) If any parameters
- * are illegal, then this routine will set new defaults.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
- * PDQ, and all FDDI PCI controllers, all values are legal.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * dfx_adap_init has NOT been called yet so burst size and other items have
- * not been set.
- *
- * Side Effects:
- * None
- */
-
-static void __devinit dfx_bus_config_check(DFX_board_t *bp)
-{
- struct device __maybe_unused *bdev = bp->bus_dev;
- int dfx_bus_eisa = DFX_BUS_EISA(bdev);
- int status; /* return code from adapter port control call */
- u32 host_data; /* LW data returned from port control call */
-
- DBG_printk("In dfx_bus_config_check...\n");
-
- /* Configuration check only valid for EISA adapter */
-
- if (dfx_bus_eisa) {
- /*
- * First check if revision 2 EISA controller. Rev. 1 cards used
- * PDQ revision B, so no workaround needed in this case. Rev. 3
- * cards used PDQ revision E, so no workaround needed in this
- * case, either. Only Rev. 2 cards used either Rev. D or E
- * chips, so we must verify the chip revision on Rev. 2 cards.
- */
- if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
- /*
- * Revision 2 FDDI EISA controller found,
- * so let's check PDQ revision of adapter.
- */
- status = dfx_hw_port_ctrl_req(bp,
- PI_PCTRL_M_SUB_CMD,
- PI_SUB_CMD_K_PDQ_REV_GET,
- 0,
- &host_data);
- if ((status != DFX_K_SUCCESS) || (host_data == 2))
- {
- /*
- * Either we couldn't determine the PDQ revision, or
- * we determined that it is at revision D. In either case,
- * we need to implement the workaround.
- */
-
- /* Ensure that the burst size is set to 8 longwords or less */
-
- switch (bp->burst_size)
- {
- case PI_PDATA_B_DMA_BURST_SIZE_32:
- case PI_PDATA_B_DMA_BURST_SIZE_16:
- bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
- break;
-
- default:
- break;
- }
-
- /* Ensure that full-duplex mode is not enabled */
-
- bp->full_duplex_enb = PI_SNMP_K_FALSE;
- }
- }
- }
- }
-
-
-/*
- * ===================
- * = dfx_driver_init =
- * ===================
- *
- * Overview:
- * Initializes remaining adapter board structure information
- * and makes sure adapter is in a safe state prior to dfx_open().
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * dev - pointer to device information
- * print_name - printable device name
- *
- * Functional Description:
- * This function allocates additional resources such as the host memory
- * blocks needed by the adapter (eg. descriptor and consumer blocks).
- * Remaining bus initialization steps are also completed. The adapter
- * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
- * must call dfx_open() to open the adapter and bring it on-line.
- *
- * Return Codes:
- * DFX_K_SUCCESS - initialization succeeded
- * DFX_K_FAILURE - initialization failed - could not allocate memory
- * or read adapter MAC address
- *
- * Assumptions:
- * Memory allocated from pci_alloc_consistent() call is physically
- * contiguous, locked memory.
- *
- * Side Effects:
- * Adapter is reset and should be in DMA_UNAVAILABLE state before
- * returning from this routine.
- */
-
-static int __devinit dfx_driver_init(struct net_device *dev,
- const char *print_name,
- resource_size_t bar_start)
-{
- DFX_board_t *bp = netdev_priv(dev);
- struct device *bdev = bp->bus_dev;
- int dfx_bus_pci = DFX_BUS_PCI(bdev);
- int dfx_bus_eisa = DFX_BUS_EISA(bdev);
- int dfx_bus_tc = DFX_BUS_TC(bdev);
- int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
- int alloc_size; /* total buffer size needed */
- char *top_v, *curr_v; /* virtual addrs into memory block */
- dma_addr_t top_p, curr_p; /* physical addrs into memory block */
- u32 data; /* host data register value */
- __le32 le32;
- char *board_name = NULL;
-
- DBG_printk("In dfx_driver_init...\n");
-
- /* Initialize bus-specific hardware registers */
-
- dfx_bus_init(dev);
-
- /*
- * Initialize default values for configurable parameters
- *
- * Note: All of these parameters are ones that a user may
- * want to customize. It'd be nice to break these
- * out into Space.c or someplace else that's more
- * accessible/understandable than this file.
- */
-
- bp->full_duplex_enb = PI_SNMP_K_FALSE;
- bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
- bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
- bp->rcv_bufs_to_post = RCV_BUFS_DEF;
-
- /*
- * Ensure that HW configuration is OK
- *
- * Note: Depending on the hardware revision, we may need to modify
- * some of the configurable parameters to workaround hardware
- * limitations. We'll perform this configuration check AFTER
- * setting the parameters to their default values.
- */
-
- dfx_bus_config_check(bp);
-
- /* Disable PDQ interrupts first */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
-
- /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
-
- (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
-
- /* Read the factory MAC address from the adapter then save it */
-
- if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
- &data) != DFX_K_SUCCESS) {
- printk("%s: Could not read adapter factory MAC address!\n",
- print_name);
- return DFX_K_FAILURE;
- }
- le32 = cpu_to_le32(data);
- memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
-
- if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
- &data) != DFX_K_SUCCESS) {
- printk("%s: Could not read adapter factory MAC address!\n",
- print_name);
- return DFX_K_FAILURE;
- }
- le32 = cpu_to_le32(data);
- memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
-
- /*
- * Set current address to factory address
- *
- * Note: Node address override support is handled through
- * dfx_ctl_set_mac_address.
- */
-
- memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
- if (dfx_bus_tc)
- board_name = "DEFTA";
- if (dfx_bus_eisa)
- board_name = "DEFEA";
- if (dfx_bus_pci)
- board_name = "DEFPA";
- pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
- print_name, board_name, dfx_use_mmio ? "" : "I/O ",
- (long long)bar_start, dev->irq, dev->dev_addr);
-
- /*
- * Get memory for descriptor block, consumer block, and other buffers
- * that need to be DMA read or written to by the adapter.
- */
-
- alloc_size = sizeof(PI_DESCR_BLOCK) +
- PI_CMD_REQ_K_SIZE_MAX +
- PI_CMD_RSP_K_SIZE_MAX +
-#ifndef DYNAMIC_BUFFERS
- (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
-#endif
- sizeof(PI_CONSUMER_BLOCK) +
- (PI_ALIGN_K_DESC_BLK - 1);
- bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
- &bp->kmalloced_dma,
- GFP_ATOMIC);
- if (top_v == NULL) {
- printk("%s: Could not allocate memory for host buffers "
- "and structures!\n", print_name);
- return DFX_K_FAILURE;
- }
- memset(top_v, 0, alloc_size); /* zero out memory before continuing */
- top_p = bp->kmalloced_dma; /* get physical address of buffer */
-
- /*
- * To guarantee the 8K alignment required for the descriptor block, 8K - 1
- * plus the amount of memory needed was allocated. The physical address
- * is now 8K aligned. By carving up the memory in a specific order,
- * we'll guarantee the alignment requirements for all other structures.
- *
- * Note: If the assumptions change regarding the non-paged, non-cached,
- * physically contiguous nature of the memory block or the address
- * alignments, then we'll need to implement a different algorithm
- * for allocating the needed memory.
- */
-
- curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
- curr_v = top_v + (curr_p - top_p);
-
- /* Reserve space for descriptor block */
-
- bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
- bp->descr_block_phys = curr_p;
- curr_v += sizeof(PI_DESCR_BLOCK);
- curr_p += sizeof(PI_DESCR_BLOCK);
-
- /* Reserve space for command request buffer */
-
- bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
- bp->cmd_req_phys = curr_p;
- curr_v += PI_CMD_REQ_K_SIZE_MAX;
- curr_p += PI_CMD_REQ_K_SIZE_MAX;
-
- /* Reserve space for command response buffer */
-
- bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
- bp->cmd_rsp_phys = curr_p;
- curr_v += PI_CMD_RSP_K_SIZE_MAX;
- curr_p += PI_CMD_RSP_K_SIZE_MAX;
-
- /* Reserve space for the LLC host receive queue buffers */
-
- bp->rcv_block_virt = curr_v;
- bp->rcv_block_phys = curr_p;
-
-#ifndef DYNAMIC_BUFFERS
- curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
- curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
-#endif
-
- /* Reserve space for the consumer block */
-
- bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
- bp->cons_block_phys = curr_p;
-
- /* Display virtual and physical addresses if debug driver */
-
- DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
- print_name,
- (long)bp->descr_block_virt, bp->descr_block_phys);
- DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
- print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
- DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
- print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
- DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
- print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
- DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
- print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
-
- return DFX_K_SUCCESS;
-}
-
-
-/*
- * =================
- * = dfx_adap_init =
- * =================
- *
- * Overview:
- * Brings the adapter to the link avail/link unavailable state.
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * bp - pointer to board information
- * get_buffers - non-zero if buffers to be allocated
- *
- * Functional Description:
- * Issues the low-level firmware/hardware calls necessary to bring
- * the adapter up, or to properly reset and restore adapter during
- * run-time.
- *
- * Return Codes:
- * DFX_K_SUCCESS - Adapter brought up successfully
- * DFX_K_FAILURE - Adapter initialization failed
- *
- * Assumptions:
- * bp->reset_type should be set to a valid reset type value before
- * calling this routine.
- *
- * Side Effects:
- * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
- * upon a successful return of this routine.
- */
-
-static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
- {
- DBG_printk("In dfx_adap_init...\n");
-
- /* Disable PDQ interrupts first */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
-
- /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
-
- if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
- {
- printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /*
- * When the PDQ is reset, some false Type 0 interrupts may be pending,
- * so we'll acknowledge all Type 0 interrupts now before continuing.
- */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
-
- /*
- * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
- *
- * Note: We only need to clear host copies of these registers. The PDQ reset
- * takes care of the on-board register values.
- */
-
- bp->cmd_req_reg.lword = 0;
- bp->cmd_rsp_reg.lword = 0;
- bp->rcv_xmt_reg.lword = 0;
-
- /* Clear consumer block before going to DMA_AVAILABLE state */
-
- memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
-
- /* Initialize the DMA Burst Size */
-
- if (dfx_hw_port_ctrl_req(bp,
- PI_PCTRL_M_SUB_CMD,
- PI_SUB_CMD_K_BURST_SIZE_SET,
- bp->burst_size,
- NULL) != DFX_K_SUCCESS)
- {
- printk("%s: Could not set adapter burst size!\n", bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /*
- * Set base address of Consumer Block
- *
- * Assumption: 32-bit physical address of consumer block is 64 byte
- * aligned. That is, bits 0-5 of the address must be zero.
- */
-
- if (dfx_hw_port_ctrl_req(bp,
- PI_PCTRL_M_CONS_BLOCK,
- bp->cons_block_phys,
- 0,
- NULL) != DFX_K_SUCCESS)
- {
- printk("%s: Could not set consumer block address!\n", bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /*
- * Set the base address of Descriptor Block and bring adapter
- * to DMA_AVAILABLE state.
- *
- * Note: We also set the literal and data swapping requirements
- * in this command.
- *
- * Assumption: 32-bit physical address of descriptor block
- * is 8Kbyte aligned.
- */
- if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
- (u32)(bp->descr_block_phys |
- PI_PDATA_A_INIT_M_BSWAP_INIT),
- 0, NULL) != DFX_K_SUCCESS) {
- printk("%s: Could not set descriptor block address!\n",
- bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /* Set transmit flush timeout value */
-
- bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
- bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
- bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
- bp->cmd_req_virt->char_set.item[0].item_index = 0;
- bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
- if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
- {
- printk("%s: DMA command request failed!\n", bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /* Set the initial values for eFDXEnable and MACTReq MIB objects */
-
- bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
- bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
- bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
- bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
- bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
- bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
- bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
- bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
- if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
- {
- printk("%s: DMA command request failed!\n", bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /* Initialize adapter CAM */
-
- if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
- {
- printk("%s: Adapter CAM update failed!\n", bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /* Initialize adapter filters */
-
- if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
- {
- printk("%s: Adapter filters update failed!\n", bp->dev->name);
- return DFX_K_FAILURE;
- }
-
- /*
- * Remove any existing dynamic buffers (i.e. if the adapter is being
- * reinitialized)
- */
-
- if (get_buffers)
- dfx_rcv_flush(bp);
-
- /* Initialize receive descriptor block and produce buffers */
-
- if (dfx_rcv_init(bp, get_buffers))
- {
- printk("%s: Receive buffer allocation failed\n", bp->dev->name);
- if (get_buffers)
- dfx_rcv_flush(bp);
- return DFX_K_FAILURE;
- }
-
- /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
-
- bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
- if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
- {
- printk("%s: Start command failed\n", bp->dev->name);
- if (get_buffers)
- dfx_rcv_flush(bp);
- return DFX_K_FAILURE;
- }
-
- /* Initialization succeeded, reenable PDQ interrupts */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
- return DFX_K_SUCCESS;
- }
-
-
-/*
- * ============
- * = dfx_open =
- * ============
- *
- * Overview:
- * Opens the adapter
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * dev - pointer to device information
- *
- * Functional Description:
- * This function brings the adapter to an operational state.
- *
- * Return Codes:
- * 0 - Adapter was successfully opened
- * -EAGAIN - Could not register IRQ or adapter initialization failed
- *
- * Assumptions:
- * This routine should only be called for a device that was
- * initialized successfully.
- *
- * Side Effects:
- * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
- * if the open is successful.
- */
-
-static int dfx_open(struct net_device *dev)
-{
- DFX_board_t *bp = netdev_priv(dev);
- int ret;
-
- DBG_printk("In dfx_open...\n");
-
- /* Register IRQ - support shared interrupts by passing device ptr */
-
- ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
- dev);
- if (ret) {
- printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
- return ret;
- }
-
- /*
- * Set current address to factory MAC address
- *
- * Note: We've already done this step in dfx_driver_init.
- * However, it's possible that a user has set a node
- * address override, then closed and reopened the
- * adapter. Unless we reset the device address field
- * now, we'll continue to use the existing modified
- * address.
- */
-
- memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
-
- /* Clear local unicast/multicast address tables and counts */
-
- memset(bp->uc_table, 0, sizeof(bp->uc_table));
- memset(bp->mc_table, 0, sizeof(bp->mc_table));
- bp->uc_count = 0;
- bp->mc_count = 0;
-
- /* Disable promiscuous filter settings */
-
- bp->ind_group_prom = PI_FSTATE_K_BLOCK;
- bp->group_prom = PI_FSTATE_K_BLOCK;
-
- spin_lock_init(&bp->lock);
-
- /* Reset and initialize adapter */
-
- bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
- if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
- {
- printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
- free_irq(dev->irq, dev);
- return -EAGAIN;
- }
-
- /* Set device structure info */
- netif_start_queue(dev);
- return 0;
-}
-
-
-/*
- * =============
- * = dfx_close =
- * =============
- *
- * Overview:
- * Closes the device/module.
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * dev - pointer to device information
- *
- * Functional Description:
- * This routine closes the adapter and brings it to a safe state.
- * The interrupt service routine is deregistered with the OS.
- * The adapter can be opened again with another call to dfx_open().
- *
- * Return Codes:
- * Always return 0.
- *
- * Assumptions:
- * No further requests for this adapter are made after this routine is
- * called. dfx_open() can be called to reset and reinitialize the
- * adapter.
- *
- * Side Effects:
- * Adapter should be in DMA_UNAVAILABLE state upon completion of this
- * routine.
- */
-
-static int dfx_close(struct net_device *dev)
-{
- DFX_board_t *bp = netdev_priv(dev);
-
- DBG_printk("In dfx_close...\n");
-
- /* Disable PDQ interrupts first */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
-
- /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
-
- (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
-
- /*
- * Flush any pending transmit buffers
- *
- * Note: It's important that we flush the transmit buffers
- * BEFORE we clear our copy of the Type 2 register.
- * Otherwise, we'll have no idea how many buffers
- * we need to free.
- */
-
- dfx_xmt_flush(bp);
-
- /*
- * Clear Type 1 and Type 2 registers after adapter reset
- *
- * Note: Even though we're closing the adapter, it's
- * possible that an interrupt will occur after
- * dfx_close is called. Without some assurance to
- * the contrary we want to make sure that we don't
- * process receive and transmit LLC frames and update
- * the Type 2 register with bad information.
- */
-
- bp->cmd_req_reg.lword = 0;
- bp->cmd_rsp_reg.lword = 0;
- bp->rcv_xmt_reg.lword = 0;
-
- /* Clear consumer block for the same reason given above */
-
- memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
-
- /* Release all dynamically allocate skb in the receive ring. */
-
- dfx_rcv_flush(bp);
-
- /* Clear device structure flags */
-
- netif_stop_queue(dev);
-
- /* Deregister (free) IRQ */
-
- free_irq(dev->irq, dev);
-
- return 0;
-}
-
-
-/*
- * ======================
- * = dfx_int_pr_halt_id =
- * ======================
- *
- * Overview:
- * Displays halt id's in string form.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * Determine current halt id and display appropriate string.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * None
- *
- * Side Effects:
- * None
- */
-
-static void dfx_int_pr_halt_id(DFX_board_t *bp)
- {
- PI_UINT32 port_status; /* PDQ port status register value */
- PI_UINT32 halt_id; /* PDQ port status halt ID */
-
- /* Read the latest port status */
-
- dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
-
- /* Display halt state transition information */
-
- halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
- switch (halt_id)
- {
- case PI_HALT_ID_K_SELFTEST_TIMEOUT:
- printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_PARITY_ERROR:
- printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_HOST_DIR_HALT:
- printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_SW_FAULT:
- printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_HW_FAULT:
- printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_PC_TRACE:
- printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_DMA_ERROR:
- printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_IMAGE_CRC_ERROR:
- printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
- break;
-
- case PI_HALT_ID_K_BUS_EXCEPTION:
- printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
- break;
-
- default:
- printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
- break;
- }
- }
-
-
-/*
- * ==========================
- * = dfx_int_type_0_process =
- * ==========================
- *
- * Overview:
- * Processes Type 0 interrupts.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * Processes all enabled Type 0 interrupts. If the reason for the interrupt
- * is a serious fault on the adapter, then an error message is displayed
- * and the adapter is reset.
- *
- * One tricky potential timing window is the rapid succession of "link avail"
- * "link unavail" state change interrupts. The acknowledgement of the Type 0
- * interrupt must be done before reading the state from the Port Status
- * register. This is true because a state change could occur after reading
- * the data, but before acknowledging the interrupt. If this state change
- * does happen, it would be lost because the driver is using the old state,
- * and it will never know about the new state because it subsequently
- * acknowledges the state change interrupt.
- *
- * INCORRECT CORRECT
- * read type 0 int reasons read type 0 int reasons
- * read adapter state ack type 0 interrupts
- * ack type 0 interrupts read adapter state
- * ... process interrupt ... ... process interrupt ...
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * None
- *
- * Side Effects:
- * An adapter reset may occur if the adapter has any Type 0 error interrupts
- * or if the port status indicates that the adapter is halted. The driver
- * is responsible for reinitializing the adapter with the current CAM
- * contents and adapter filter settings.
- */
-
-static void dfx_int_type_0_process(DFX_board_t *bp)
-
- {
- PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
- PI_UINT32 state; /* current adap state (from port status) */
-
- /*
- * Read host interrupt Type 0 register to determine which Type 0
- * interrupts are pending. Immediately write it back out to clear
- * those interrupts.
- */
-
- dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
- dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
-
- /* Check for Type 0 error interrupts */
-
- if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
- PI_TYPE_0_STAT_M_PM_PAR_ERR |
- PI_TYPE_0_STAT_M_BUS_PAR_ERR))
- {
- /* Check for Non-Existent Memory error */
-
- if (type_0_status & PI_TYPE_0_STAT_M_NXM)
- printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
-
- /* Check for Packet Memory Parity error */
-
- if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
- printk("%s: Packet Memory Parity Error\n", bp->dev->name);
-
- /* Check for Host Bus Parity error */
-
- if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
- printk("%s: Host Bus Parity Error\n", bp->dev->name);
-
- /* Reset adapter and bring it back on-line */
-
- bp->link_available = PI_K_FALSE; /* link is no longer available */
- bp->reset_type = 0; /* rerun on-board diagnostics */
- printk("%s: Resetting adapter...\n", bp->dev->name);
- if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
- {
- printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
- dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
- return;
- }
- printk("%s: Adapter reset successful!\n", bp->dev->name);
- return;
- }
-
- /* Check for transmit flush interrupt */
-
- if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
- {
- /* Flush any pending xmt's and acknowledge the flush interrupt */
-
- bp->link_available = PI_K_FALSE; /* link is no longer available */
- dfx_xmt_flush(bp); /* flush any outstanding packets */
- (void) dfx_hw_port_ctrl_req(bp,
- PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
- 0,
- 0,
- NULL);
- }
-
- /* Check for adapter state change */
-
- if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
- {
- /* Get latest adapter state */
-
- state = dfx_hw_adap_state_rd(bp); /* get adapter state */
- if (state == PI_STATE_K_HALTED)
- {
- /*
- * Adapter has transitioned to HALTED state, try to reset
- * adapter to bring it back on-line. If reset fails,
- * leave the adapter in the broken state.
- */
-
- printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
- dfx_int_pr_halt_id(bp); /* display halt id as string */
-
- /* Reset adapter and bring it back on-line */
-
- bp->link_available = PI_K_FALSE; /* link is no longer available */
- bp->reset_type = 0; /* rerun on-board diagnostics */
- printk("%s: Resetting adapter...\n", bp->dev->name);
- if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
- {
- printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
- dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
- return;
- }
- printk("%s: Adapter reset successful!\n", bp->dev->name);
- }
- else if (state == PI_STATE_K_LINK_AVAIL)
- {
- bp->link_available = PI_K_TRUE; /* set link available flag */
- }
- }
- }
-
-
-/*
- * ==================
- * = dfx_int_common =
- * ==================
- *
- * Overview:
- * Interrupt service routine (ISR)
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * This is the ISR which processes incoming adapter interrupts.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * This routine assumes PDQ interrupts have not been disabled.
- * When interrupts are disabled at the PDQ, the Port Status register
- * is automatically cleared. This routine uses the Port Status
- * register value to determine whether a Type 0 interrupt occurred,
- * so it's important that adapter interrupts are not normally
- * enabled/disabled at the PDQ.
- *
- * It's vital that this routine is NOT reentered for the
- * same board and that the OS is not in another section of
- * code (eg. dfx_xmt_queue_pkt) for the same board on a
- * different thread.
- *
- * Side Effects:
- * Pending interrupts are serviced. Depending on the type of
- * interrupt, acknowledging and clearing the interrupt at the
- * PDQ involves writing a register to clear the interrupt bit
- * or updating completion indices.
- */
-
-static void dfx_int_common(struct net_device *dev)
-{
- DFX_board_t *bp = netdev_priv(dev);
- PI_UINT32 port_status; /* Port Status register */
-
- /* Process xmt interrupts - frequent case, so always call this routine */
-
- if(dfx_xmt_done(bp)) /* free consumed xmt packets */
- netif_wake_queue(dev);
-
- /* Process rcv interrupts - frequent case, so always call this routine */
-
- dfx_rcv_queue_process(bp); /* service received LLC frames */
-
- /*
- * Transmit and receive producer and completion indices are updated on the
- * adapter by writing to the Type 2 Producer register. Since the frequent
- * case is that we'll be processing either LLC transmit or receive buffers,
- * we'll optimize I/O writes by doing a single register write here.
- */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
-
- /* Read PDQ Port Status register to find out which interrupts need processing */
-
- dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
-
- /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
-
- if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
- dfx_int_type_0_process(bp); /* process Type 0 interrupts */
- }
-
-
-/*
- * =================
- * = dfx_interrupt =
- * =================
- *
- * Overview:
- * Interrupt processing routine
- *
- * Returns:
- * Whether a valid interrupt was seen.
- *
- * Arguments:
- * irq - interrupt vector
- * dev_id - pointer to device information
- *
- * Functional Description:
- * This routine calls the interrupt processing routine for this adapter. It
- * disables and reenables adapter interrupts, as appropriate. We can support
- * shared interrupts since the incoming dev_id pointer provides our device
- * structure context.
- *
- * Return Codes:
- * IRQ_HANDLED - an IRQ was handled.
- * IRQ_NONE - no IRQ was handled.
- *
- * Assumptions:
- * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
- * on Intel-based systems) is done by the operating system outside this
- * routine.
- *
- * System interrupts are enabled through this call.
- *
- * Side Effects:
- * Interrupts are disabled, then reenabled at the adapter.
- */
-
-static irqreturn_t dfx_interrupt(int irq, void *dev_id)
-{
- struct net_device *dev = dev_id;
- DFX_board_t *bp = netdev_priv(dev);
- struct device *bdev = bp->bus_dev;
- int dfx_bus_pci = DFX_BUS_PCI(bdev);
- int dfx_bus_eisa = DFX_BUS_EISA(bdev);
- int dfx_bus_tc = DFX_BUS_TC(bdev);
-
- /* Service adapter interrupts */
-
- if (dfx_bus_pci) {
- u32 status;
-
- dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
- if (!(status & PFI_STATUS_M_PDQ_INT))
- return IRQ_NONE;
-
- spin_lock(&bp->lock);
-
- /* Disable PDQ-PFI interrupts at PFI */
- dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
- PFI_MODE_M_DMA_ENB);
-
- /* Call interrupt service routine for this adapter */
- dfx_int_common(dev);
-
- /* Clear PDQ interrupt status bit and reenable interrupts */
- dfx_port_write_long(bp, PFI_K_REG_STATUS,
- PFI_STATUS_M_PDQ_INT);
- dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
- (PFI_MODE_M_PDQ_INT_ENB |
- PFI_MODE_M_DMA_ENB));
-
- spin_unlock(&bp->lock);
- }
- if (dfx_bus_eisa) {
- unsigned long base_addr = to_eisa_device(bdev)->base_addr;
- u8 status;
-
- status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
- if (!(status & PI_CONFIG_STAT_0_M_PEND))
- return IRQ_NONE;
-
- spin_lock(&bp->lock);
-
- /* Disable interrupts at the ESIC */
- status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
- outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
-
- /* Call interrupt service routine for this adapter */
- dfx_int_common(dev);
-
- /* Reenable interrupts at the ESIC */
- status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
- status |= PI_CONFIG_STAT_0_M_INT_ENB;
- outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
-
- spin_unlock(&bp->lock);
- }
- if (dfx_bus_tc) {
- u32 status;
-
- dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
- if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
- PI_PSTATUS_M_XMT_DATA_PENDING |
- PI_PSTATUS_M_SMT_HOST_PENDING |
- PI_PSTATUS_M_UNSOL_PENDING |
- PI_PSTATUS_M_CMD_RSP_PENDING |
- PI_PSTATUS_M_CMD_REQ_PENDING |
- PI_PSTATUS_M_TYPE_0_PENDING)))
- return IRQ_NONE;
-
- spin_lock(&bp->lock);
-
- /* Call interrupt service routine for this adapter */
- dfx_int_common(dev);
-
- spin_unlock(&bp->lock);
- }
-
- return IRQ_HANDLED;
-}
-
-
-/*
- * =====================
- * = dfx_ctl_get_stats =
- * =====================
- *
- * Overview:
- * Get statistics for FDDI adapter
- *
- * Returns:
- * Pointer to FDDI statistics structure
- *
- * Arguments:
- * dev - pointer to device information
- *
- * Functional Description:
- * Gets current MIB objects from adapter, then
- * returns FDDI statistics structure as defined
- * in if_fddi.h.
- *
- * Note: Since the FDDI statistics structure is
- * still new and the device structure doesn't
- * have an FDDI-specific get statistics handler,
- * we'll return the FDDI statistics structure as
- * a pointer to an Ethernet statistics structure.
- * That way, at least the first part of the statistics
- * structure can be decoded properly, and it allows
- * "smart" applications to perform a second cast to
- * decode the FDDI-specific statistics.
- *
- * We'll have to pay attention to this routine as the
- * device structure becomes more mature and LAN media
- * independent.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * None
- *
- * Side Effects:
- * None
- */
-
-static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
- {
- DFX_board_t *bp = netdev_priv(dev);
-
- /* Fill the bp->stats structure with driver-maintained counters */
-
- bp->stats.gen.rx_packets = bp->rcv_total_frames;
- bp->stats.gen.tx_packets = bp->xmt_total_frames;
- bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
- bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
- bp->stats.gen.rx_errors = bp->rcv_crc_errors +
- bp->rcv_frame_status_errors +
- bp->rcv_length_errors;
- bp->stats.gen.tx_errors = bp->xmt_length_errors;
- bp->stats.gen.rx_dropped = bp->rcv_discards;
- bp->stats.gen.tx_dropped = bp->xmt_discards;
- bp->stats.gen.multicast = bp->rcv_multicast_frames;
- bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
-
- /* Get FDDI SMT MIB objects */
-
- bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
- if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
- return (struct net_device_stats *)&bp->stats;
-
- /* Fill the bp->stats structure with the SMT MIB object values */
-
- memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
- bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
- bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
- bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
- memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
- bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
- bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
- bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
- bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
- bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
- bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
- bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
- bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
- bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
- bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
- bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
- bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
- bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
- bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
- bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
- bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
- bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
- bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
- bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
- bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
- bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
- bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
- bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
- bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
- memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
- memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
- memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
- memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
- bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
- bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
- bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
- memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
- bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
- bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
- bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
- bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
- bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
- bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
- bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
- bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
- bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
- bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
- bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
- bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
- bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
- bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
- bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
- bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
- memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
- bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
- bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
- bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
- bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
- bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
- bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
- bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
- bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
- bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
- bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
- memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
- memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
- bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
- bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
- bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
- bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
- bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
- bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
- bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
- bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
- bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
- bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
- bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
- bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
- bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
- bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
- bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
- bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
- bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
- bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
- bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
- bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
- bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
- bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
- bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
- bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
- bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
- bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
-
- /* Get FDDI counters */
-
- bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
- if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
- return (struct net_device_stats *)&bp->stats;
-
- /* Fill the bp->stats structure with the FDDI counter values */
-
- bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
- bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
- bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
- bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
- bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
- bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
- bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
- bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
- bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
- bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
- bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
-
- return (struct net_device_stats *)&bp->stats;
- }
-
-
-/*
- * ==============================
- * = dfx_ctl_set_multicast_list =
- * ==============================
- *
- * Overview:
- * Enable/Disable LLC frame promiscuous mode reception
- * on the adapter and/or update multicast address table.
- *
- * Returns:
- * None
- *
- * Arguments:
- * dev - pointer to device information
- *
- * Functional Description:
- * This routine follows a fairly simple algorithm for setting the
- * adapter filters and CAM:
- *
- * if IFF_PROMISC flag is set
- * enable LLC individual/group promiscuous mode
- * else
- * disable LLC individual/group promiscuous mode
- * if number of incoming multicast addresses >
- * (CAM max size - number of unicast addresses in CAM)
- * enable LLC group promiscuous mode
- * set driver-maintained multicast address count to zero
- * else
- * disable LLC group promiscuous mode
- * set driver-maintained multicast address count to incoming count
- * update adapter CAM
- * update adapter filters
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * Multicast addresses are presented in canonical (LSB) format.
- *
- * Side Effects:
- * On-board adapter CAM and filters are updated.
- */
-
-static void dfx_ctl_set_multicast_list(struct net_device *dev)
-{
- DFX_board_t *bp = netdev_priv(dev);
- int i; /* used as index in for loop */
- struct netdev_hw_addr *ha;
-
- /* Enable LLC frame promiscuous mode, if necessary */
-
- if (dev->flags & IFF_PROMISC)
- bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
-
- /* Else, update multicast address table */
-
- else
- {
- bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
- /*
- * Check whether incoming multicast address count exceeds table size
- *
- * Note: The adapters utilize an on-board 64 entry CAM for
- * supporting perfect filtering of multicast packets
- * and bridge functions when adding unicast addresses.
- * There is no hash function available. To support
- * additional multicast addresses, the all multicast
- * filter (LLC group promiscuous mode) must be enabled.
- *
- * The firmware reserves two CAM entries for SMT-related
- * multicast addresses, which leaves 62 entries available.
- * The following code ensures that we're not being asked
- * to add more than 62 addresses to the CAM. If we are,
- * the driver will enable the all multicast filter.
- * Should the number of multicast addresses drop below
- * the high water mark, the filter will be disabled and
- * perfect filtering will be used.
- */
-
- if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
- {
- bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
- bp->mc_count = 0; /* Don't add mc addrs to CAM */
- }
- else
- {
- bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
- bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
- }
-
- /* Copy addresses to multicast address table, then update adapter CAM */
-
- i = 0;
- netdev_for_each_mc_addr(ha, dev)
- memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
- ha->addr, FDDI_K_ALEN);
-
- if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
- {
- DBG_printk("%s: Could not update multicast address table!\n", dev->name);
- }
- else
- {
- DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
- }
- }
-
- /* Update adapter filters */
-
- if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
- {
- DBG_printk("%s: Could not update adapter filters!\n", dev->name);
- }
- else
- {
- DBG_printk("%s: Adapter filters updated!\n", dev->name);
- }
- }
-
-
-/*
- * ===========================
- * = dfx_ctl_set_mac_address =
- * ===========================
- *
- * Overview:
- * Add node address override (unicast address) to adapter
- * CAM and update dev_addr field in device table.
- *
- * Returns:
- * None
- *
- * Arguments:
- * dev - pointer to device information
- * addr - pointer to sockaddr structure containing unicast address to add
- *
- * Functional Description:
- * The adapter supports node address overrides by adding one or more
- * unicast addresses to the adapter CAM. This is similar to adding
- * multicast addresses. In this routine we'll update the driver and
- * device structures with the new address, then update the adapter CAM
- * to ensure that the adapter will copy and strip frames destined and
- * sourced by that address.
- *
- * Return Codes:
- * Always returns zero.
- *
- * Assumptions:
- * The address pointed to by addr->sa_data is a valid unicast
- * address and is presented in canonical (LSB) format.
- *
- * Side Effects:
- * On-board adapter CAM is updated. On-board adapter filters
- * may be updated.
- */
-
-static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
- {
- struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
- DFX_board_t *bp = netdev_priv(dev);
-
- /* Copy unicast address to driver-maintained structs and update count */
-
- memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
- memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
- bp->uc_count = 1;
-
- /*
- * Verify we're not exceeding the CAM size by adding unicast address
- *
- * Note: It's possible that before entering this routine we've
- * already filled the CAM with 62 multicast addresses.
- * Since we need to place the node address override into
- * the CAM, we have to check to see that we're not
- * exceeding the CAM size. If we are, we have to enable
- * the LLC group (multicast) promiscuous mode filter as
- * in dfx_ctl_set_multicast_list.
- */
-
- if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
- {
- bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
- bp->mc_count = 0; /* Don't add mc addrs to CAM */
-
- /* Update adapter filters */
-
- if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
- {
- DBG_printk("%s: Could not update adapter filters!\n", dev->name);
- }
- else
- {
- DBG_printk("%s: Adapter filters updated!\n", dev->name);
- }
- }
-
- /* Update adapter CAM with new unicast address */
-
- if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
- {
- DBG_printk("%s: Could not set new MAC address!\n", dev->name);
- }
- else
- {
- DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
- }
- return 0; /* always return zero */
- }
-
-
-/*
- * ======================
- * = dfx_ctl_update_cam =
- * ======================
- *
- * Overview:
- * Procedure to update adapter CAM (Content Addressable Memory)
- * with desired unicast and multicast address entries.
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * Updates adapter CAM with current contents of board structure
- * unicast and multicast address tables. Since there are only 62
- * free entries in CAM, this routine ensures that the command
- * request buffer is not overrun.
- *
- * Return Codes:
- * DFX_K_SUCCESS - Request succeeded
- * DFX_K_FAILURE - Request failed
- *
- * Assumptions:
- * All addresses being added (unicast and multicast) are in canonical
- * order.
- *
- * Side Effects:
- * On-board adapter CAM is updated.
- */
-
-static int dfx_ctl_update_cam(DFX_board_t *bp)
- {
- int i; /* used as index */
- PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
-
- /*
- * Fill in command request information
- *
- * Note: Even though both the unicast and multicast address
- * table entries are stored as contiguous 6 byte entries,
- * the firmware address filter set command expects each
- * entry to be two longwords (8 bytes total). We must be
- * careful to only copy the six bytes of each unicast and
- * multicast table entry into each command entry. This
- * is also why we must first clear the entire command
- * request buffer.
- */
-
- memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
- bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
- p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
-
- /* Now add unicast addresses to command request buffer, if any */
-
- for (i=0; i < (int)bp->uc_count; i++)
- {
- if (i < PI_CMD_ADDR_FILTER_K_SIZE)
- {
- memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
- p_addr++; /* point to next command entry */
- }
- }
-
- /* Now add multicast addresses to command request buffer, if any */
-
- for (i=0; i < (int)bp->mc_count; i++)
- {
- if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
- {
- memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
- p_addr++; /* point to next command entry */
- }
- }
-
- /* Issue command to update adapter CAM, then return */
-
- if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
- return DFX_K_FAILURE;
- return DFX_K_SUCCESS;
- }
-
-
-/*
- * ==========================
- * = dfx_ctl_update_filters =
- * ==========================
- *
- * Overview:
- * Procedure to update adapter filters with desired
- * filter settings.
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * Enables or disables filter using current filter settings.
- *
- * Return Codes:
- * DFX_K_SUCCESS - Request succeeded.
- * DFX_K_FAILURE - Request failed.
- *
- * Assumptions:
- * We must always pass up packets destined to the broadcast
- * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
- * broadcast filter enabled.
- *
- * Side Effects:
- * On-board adapter filters are updated.
- */
-
-static int dfx_ctl_update_filters(DFX_board_t *bp)
- {
- int i = 0; /* used as index */
-
- /* Fill in command request information */
-
- bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
-
- /* Initialize Broadcast filter - * ALWAYS ENABLED * */
-
- bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
- bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
-
- /* Initialize LLC Individual/Group Promiscuous filter */
-
- bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
- bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
-
- /* Initialize LLC Group Promiscuous filter */
-
- bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
- bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
-
- /* Terminate the item code list */
-
- bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
-
- /* Issue command to update adapter filters, then return */
-
- if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
- return DFX_K_FAILURE;
- return DFX_K_SUCCESS;
- }
-
-
-/*
- * ======================
- * = dfx_hw_dma_cmd_req =
- * ======================
- *
- * Overview:
- * Sends PDQ DMA command to adapter firmware
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * The command request and response buffers are posted to the adapter in the manner
- * described in the PDQ Port Specification:
- *
- * 1. Command Response Buffer is posted to adapter.
- * 2. Command Request Buffer is posted to adapter.
- * 3. Command Request consumer index is polled until it indicates that request
- * buffer has been DMA'd to adapter.
- * 4. Command Response consumer index is polled until it indicates that response
- * buffer has been DMA'd from adapter.
- *
- * This ordering ensures that a response buffer is already available for the firmware
- * to use once it's done processing the request buffer.
- *
- * Return Codes:
- * DFX_K_SUCCESS - DMA command succeeded
- * DFX_K_OUTSTATE - Adapter is NOT in proper state
- * DFX_K_HW_TIMEOUT - DMA command timed out
- *
- * Assumptions:
- * Command request buffer has already been filled with desired DMA command.
- *
- * Side Effects:
- * None
- */
-
-static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
- {
- int status; /* adapter status */
- int timeout_cnt; /* used in for loops */
-
- /* Make sure the adapter is in a state that we can issue the DMA command in */
-
- status = dfx_hw_adap_state_rd(bp);
- if ((status == PI_STATE_K_RESET) ||
- (status == PI_STATE_K_HALTED) ||
- (status == PI_STATE_K_DMA_UNAVAIL) ||
- (status == PI_STATE_K_UPGRADE))
- return DFX_K_OUTSTATE;
-
- /* Put response buffer on the command response queue */
-
- bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
- ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
- bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
-
- /* Bump (and wrap) the producer index and write out to register */
-
- bp->cmd_rsp_reg.index.prod += 1;
- bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
- dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
-
- /* Put request buffer on the command request queue */
-
- bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
- PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
- bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
-
- /* Bump (and wrap) the producer index and write out to register */
-
- bp->cmd_req_reg.index.prod += 1;
- bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
- dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
-
- /*
- * Here we wait for the command request consumer index to be equal
- * to the producer, indicating that the adapter has DMAed the request.
- */
-
- for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
- {
- if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
- break;
- udelay(100); /* wait for 100 microseconds */
- }
- if (timeout_cnt == 0)
- return DFX_K_HW_TIMEOUT;
-
- /* Bump (and wrap) the completion index and write out to register */
-
- bp->cmd_req_reg.index.comp += 1;
- bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
- dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
-
- /*
- * Here we wait for the command response consumer index to be equal
- * to the producer, indicating that the adapter has DMAed the response.
- */
-
- for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
- {
- if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
- break;
- udelay(100); /* wait for 100 microseconds */
- }
- if (timeout_cnt == 0)
- return DFX_K_HW_TIMEOUT;
-
- /* Bump (and wrap) the completion index and write out to register */
-
- bp->cmd_rsp_reg.index.comp += 1;
- bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
- dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
- return DFX_K_SUCCESS;
- }
-
-
-/*
- * ========================
- * = dfx_hw_port_ctrl_req =
- * ========================
- *
- * Overview:
- * Sends PDQ port control command to adapter firmware
- *
- * Returns:
- * Host data register value in host_data if ptr is not NULL
- *
- * Arguments:
- * bp - pointer to board information
- * command - port control command
- * data_a - port data A register value
- * data_b - port data B register value
- * host_data - ptr to host data register value
- *
- * Functional Description:
- * Send generic port control command to adapter by writing
- * to various PDQ port registers, then polling for completion.
- *
- * Return Codes:
- * DFX_K_SUCCESS - port control command succeeded
- * DFX_K_HW_TIMEOUT - port control command timed out
- *
- * Assumptions:
- * None
- *
- * Side Effects:
- * None
- */
-
-static int dfx_hw_port_ctrl_req(
- DFX_board_t *bp,
- PI_UINT32 command,
- PI_UINT32 data_a,
- PI_UINT32 data_b,
- PI_UINT32 *host_data
- )
-
- {
- PI_UINT32 port_cmd; /* Port Control command register value */
- int timeout_cnt; /* used in for loops */
-
- /* Set Command Error bit in command longword */
-
- port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
-
- /* Issue port command to the adapter */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
- dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
- dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
-
- /* Now wait for command to complete */
-
- if (command == PI_PCTRL_M_BLAST_FLASH)
- timeout_cnt = 600000; /* set command timeout count to 60 seconds */
- else
- timeout_cnt = 20000; /* set command timeout count to 2 seconds */
-
- for (; timeout_cnt > 0; timeout_cnt--)
- {
- dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
- if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
- break;
- udelay(100); /* wait for 100 microseconds */
- }
- if (timeout_cnt == 0)
- return DFX_K_HW_TIMEOUT;
-
- /*
- * If the address of host_data is non-zero, assume caller has supplied a
- * non NULL pointer, and return the contents of the HOST_DATA register in
- * it.
- */
-
- if (host_data != NULL)
- dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
- return DFX_K_SUCCESS;
- }
-
-
-/*
- * =====================
- * = dfx_hw_adap_reset =
- * =====================
- *
- * Overview:
- * Resets adapter
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- * type - type of reset to perform
- *
- * Functional Description:
- * Issue soft reset to adapter by writing to PDQ Port Reset
- * register. Use incoming reset type to tell adapter what
- * kind of reset operation to perform.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * This routine merely issues a soft reset to the adapter.
- * It is expected that after this routine returns, the caller
- * will appropriately poll the Port Status register for the
- * adapter to enter the proper state.
- *
- * Side Effects:
- * Internal adapter registers are cleared.
- */
-
-static void dfx_hw_adap_reset(
- DFX_board_t *bp,
- PI_UINT32 type
- )
-
- {
- /* Set Reset type and assert reset */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
- dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
-
- /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
-
- udelay(20);
-
- /* Deassert reset */
-
- dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
- }
-
-
-/*
- * ========================
- * = dfx_hw_adap_state_rd =
- * ========================
- *
- * Overview:
- * Returns current adapter state
- *
- * Returns:
- * Adapter state per PDQ Port Specification
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * Reads PDQ Port Status register and returns adapter state.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * None
- *
- * Side Effects:
- * None
- */
-
-static int dfx_hw_adap_state_rd(DFX_board_t *bp)
- {
- PI_UINT32 port_status; /* Port Status register value */
-
- dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
- return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
- }
-
-
-/*
- * =====================
- * = dfx_hw_dma_uninit =
- * =====================
- *
- * Overview:
- * Brings adapter to DMA_UNAVAILABLE state
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * bp - pointer to board information
- * type - type of reset to perform
- *
- * Functional Description:
- * Bring adapter to DMA_UNAVAILABLE state by performing the following:
- * 1. Set reset type bit in Port Data A Register then reset adapter.
- * 2. Check that adapter is in DMA_UNAVAILABLE state.
- *
- * Return Codes:
- * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
- * DFX_K_HW_TIMEOUT - adapter did not reset properly
- *
- * Assumptions:
- * None
- *
- * Side Effects:
- * Internal adapter registers are cleared.
- */
-
-static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
- {
- int timeout_cnt; /* used in for loops */
-
- /* Set reset type bit and reset adapter */
-
- dfx_hw_adap_reset(bp, type);
-
- /* Now wait for adapter to enter DMA_UNAVAILABLE state */
-
- for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
- {
- if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
- break;
- udelay(100); /* wait for 100 microseconds */
- }
- if (timeout_cnt == 0)
- return DFX_K_HW_TIMEOUT;
- return DFX_K_SUCCESS;
- }
-
-/*
- * Align an sk_buff to a boundary power of 2
- *
- */
-
-static void my_skb_align(struct sk_buff *skb, int n)
-{
- unsigned long x = (unsigned long)skb->data;
- unsigned long v;
-
- v = ALIGN(x, n); /* Where we want to be */
-
- skb_reserve(skb, v - x);
-}
-
-
-/*
- * ================
- * = dfx_rcv_init =
- * ================
- *
- * Overview:
- * Produces buffers to adapter LLC Host receive descriptor block
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- * get_buffers - non-zero if buffers to be allocated
- *
- * Functional Description:
- * This routine can be called during dfx_adap_init() or during an adapter
- * reset. It initializes the descriptor block and produces all allocated
- * LLC Host queue receive buffers.
- *
- * Return Codes:
- * Return 0 on success or -ENOMEM if buffer allocation failed (when using
- * dynamic buffer allocation). If the buffer allocation failed, the
- * already allocated buffers will not be released and the caller should do
- * this.
- *
- * Assumptions:
- * The PDQ has been reset and the adapter and driver maintained Type 2
- * register indices are cleared.
- *
- * Side Effects:
- * Receive buffers are posted to the adapter LLC queue and the adapter
- * is notified.
- */
-
-static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
- {
- int i, j; /* used in for loop */
-
- /*
- * Since each receive buffer is a single fragment of same length, initialize
- * first longword in each receive descriptor for entire LLC Host descriptor
- * block. Also initialize second longword in each receive descriptor with
- * physical address of receive buffer. We'll always allocate receive
- * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
- * block and produce new receive buffers by simply updating the receive
- * producer index.
- *
- * Assumptions:
- * To support all shipping versions of PDQ, the receive buffer size
- * must be mod 128 in length and the physical address must be 128 byte
- * aligned. In other words, bits 0-6 of the length and address must
- * be zero for the following descriptor field entries to be correct on
- * all PDQ-based boards. We guaranteed both requirements during
- * driver initialization when we allocated memory for the receive buffers.
- */
-
- if (get_buffers) {
-#ifdef DYNAMIC_BUFFERS
- for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
- for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
- {
- struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
- if (!newskb)
- return -ENOMEM;
- bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
- ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
- /*
- * align to 128 bytes for compatibility with
- * the old EISA boards.
- */
-
- my_skb_align(newskb, 128);
- bp->descr_block_virt->rcv_data[i + j].long_1 =
- (u32)dma_map_single(bp->bus_dev, newskb->data,
- NEW_SKB_SIZE,
- DMA_FROM_DEVICE);
- /*
- * p_rcv_buff_va is only used inside the
- * kernel so we put the skb pointer here.
- */
- bp->p_rcv_buff_va[i+j] = (char *) newskb;
- }
-#else
- for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
- for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
- {
- bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
- ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
- bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
- bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
- }
-#endif
- }
-
- /* Update receive producer and Type 2 register */
-
- bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
- dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
- return 0;
- }
-
-
-/*
- * =========================
- * = dfx_rcv_queue_process =
- * =========================
- *
- * Overview:
- * Process received LLC frames.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * Received LLC frames are processed until there are no more consumed frames.
- * Once all frames are processed, the receive buffers are returned to the
- * adapter. Note that this algorithm fixes the length of time that can be spent
- * in this routine, because there are a fixed number of receive buffers to
- * process and buffers are not produced until this routine exits and returns
- * to the ISR.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * None
- *
- * Side Effects:
- * None
- */
-
-static void dfx_rcv_queue_process(
- DFX_board_t *bp
- )
-
- {
- PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
- char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
- u32 descr, pkt_len; /* FMC descriptor field and packet length */
- struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
-
- /* Service all consumed LLC receive frames */
-
- p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
- while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
- {
- /* Process any errors */
-
- int entry;
-
- entry = bp->rcv_xmt_reg.index.rcv_comp;
-#ifdef DYNAMIC_BUFFERS
- p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
-#else
- p_buff = (char *) bp->p_rcv_buff_va[entry];
-#endif
- memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
-
- if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
- {
- if (descr & PI_FMC_DESCR_M_RCC_CRC)
- bp->rcv_crc_errors++;
- else
- bp->rcv_frame_status_errors++;
- }
- else
- {
- int rx_in_place = 0;
-
- /* The frame was received without errors - verify packet length */
-
- pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
- pkt_len -= 4; /* subtract 4 byte CRC */
- if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
- bp->rcv_length_errors++;
- else{
-#ifdef DYNAMIC_BUFFERS
- if (pkt_len > SKBUFF_RX_COPYBREAK) {
- struct sk_buff *newskb;
-
- newskb = dev_alloc_skb(NEW_SKB_SIZE);
- if (newskb){
- rx_in_place = 1;
-
- my_skb_align(newskb, 128);
- skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
- dma_unmap_single(bp->bus_dev,
- bp->descr_block_virt->rcv_data[entry].long_1,
- NEW_SKB_SIZE,
- DMA_FROM_DEVICE);
- skb_reserve(skb, RCV_BUFF_K_PADDING);
- bp->p_rcv_buff_va[entry] = (char *)newskb;
- bp->descr_block_virt->rcv_data[entry].long_1 =
- (u32)dma_map_single(bp->bus_dev,
- newskb->data,
- NEW_SKB_SIZE,
- DMA_FROM_DEVICE);
- } else
- skb = NULL;
- } else
-#endif
- skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
- if (skb == NULL)
- {
- printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
- bp->rcv_discards++;
- break;
- }
- else {
-#ifndef DYNAMIC_BUFFERS
- if (! rx_in_place)
-#endif
- {
- /* Receive buffer allocated, pass receive packet up */
-
- skb_copy_to_linear_data(skb,
- p_buff + RCV_BUFF_K_PADDING,
- pkt_len + 3);
- }
-
- skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
- skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
- skb->protocol = fddi_type_trans(skb, bp->dev);
- bp->rcv_total_bytes += skb->len;
- netif_rx(skb);
-
- /* Update the rcv counters */
- bp->rcv_total_frames++;
- if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
- bp->rcv_multicast_frames++;
- }
- }
- }
-
- /*
- * Advance the producer (for recycling) and advance the completion
- * (for servicing received frames). Note that it is okay to
- * advance the producer without checking that it passes the
- * completion index because they are both advanced at the same
- * rate.
- */
-
- bp->rcv_xmt_reg.index.rcv_prod += 1;
- bp->rcv_xmt_reg.index.rcv_comp += 1;
- }
- }
-
-
-/*
- * =====================
- * = dfx_xmt_queue_pkt =
- * =====================
- *
- * Overview:
- * Queues packets for transmission
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * skb - pointer to sk_buff to queue for transmission
- * dev - pointer to device information
- *
- * Functional Description:
- * Here we assume that an incoming skb transmit request
- * is contained in a single physically contiguous buffer
- * in which the virtual address of the start of packet
- * (skb->data) can be converted to a physical address
- * by using pci_map_single().
- *
- * Since the adapter architecture requires a three byte
- * packet request header to prepend the start of packet,
- * we'll write the three byte field immediately prior to
- * the FC byte. This assumption is valid because we've
- * ensured that dev->hard_header_len includes three pad
- * bytes. By posting a single fragment to the adapter,
- * we'll reduce the number of descriptor fetches and
- * bus traffic needed to send the request.
- *
- * Also, we can't free the skb until after it's been DMA'd
- * out by the adapter, so we'll queue it in the driver and
- * return it in dfx_xmt_done.
- *
- * Return Codes:
- * 0 - driver queued packet, link is unavailable, or skbuff was bad
- * 1 - caller should requeue the sk_buff for later transmission
- *
- * Assumptions:
- * First and foremost, we assume the incoming skb pointer
- * is NOT NULL and is pointing to a valid sk_buff structure.
- *
- * The outgoing packet is complete, starting with the
- * frame control byte including the last byte of data,
- * but NOT including the 4 byte CRC. We'll let the
- * adapter hardware generate and append the CRC.
- *
- * The entire packet is stored in one physically
- * contiguous buffer which is not cached and whose
- * 32-bit physical address can be determined.
- *
- * It's vital that this routine is NOT reentered for the
- * same board and that the OS is not in another section of
- * code (eg. dfx_int_common) for the same board on a
- * different thread.
- *
- * Side Effects:
- * None
- */
-
-static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
- struct net_device *dev)
- {
- DFX_board_t *bp = netdev_priv(dev);
- u8 prod; /* local transmit producer index */
- PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
- XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
- unsigned long flags;
-
- netif_stop_queue(dev);
-
- /*
- * Verify that incoming transmit request is OK
- *
- * Note: The packet size check is consistent with other
- * Linux device drivers, although the correct packet
- * size should be verified before calling the
- * transmit routine.
- */
-
- if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
- {
- printk("%s: Invalid packet length - %u bytes\n",
- dev->name, skb->len);
- bp->xmt_length_errors++; /* bump error counter */
- netif_wake_queue(dev);
- dev_kfree_skb(skb);
- return NETDEV_TX_OK; /* return "success" */
- }
- /*
- * See if adapter link is available, if not, free buffer
- *
- * Note: If the link isn't available, free buffer and return 0
- * rather than tell the upper layer to requeue the packet.
- * The methodology here is that by the time the link
- * becomes available, the packet to be sent will be
- * fairly stale. By simply dropping the packet, the
- * higher layer protocols will eventually time out
- * waiting for response packets which it won't receive.
- */
-
- if (bp->link_available == PI_K_FALSE)
- {
- if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
- bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
- else
- {
- bp->xmt_discards++; /* bump error counter */
- dev_kfree_skb(skb); /* free sk_buff now */
- netif_wake_queue(dev);
- return NETDEV_TX_OK; /* return "success" */
- }
- }
-
- spin_lock_irqsave(&bp->lock, flags);
-
- /* Get the current producer and the next free xmt data descriptor */
-
- prod = bp->rcv_xmt_reg.index.xmt_prod;
- p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
-
- /*
- * Get pointer to auxiliary queue entry to contain information
- * for this packet.
- *
- * Note: The current xmt producer index will become the
- * current xmt completion index when we complete this
- * packet later on. So, we'll get the pointer to the
- * next auxiliary queue entry now before we bump the
- * producer index.
- */
-
- p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
-
- /* Write the three PRH bytes immediately before the FC byte */
-
- skb_push(skb,3);
- skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
- skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
- skb->data[2] = DFX_PRH2_BYTE; /* specification */
-
- /*
- * Write the descriptor with buffer info and bump producer
- *
- * Note: Since we need to start DMA from the packet request
- * header, we'll add 3 bytes to the DMA buffer length,
- * and we'll determine the physical address of the
- * buffer from the PRH, not skb->data.
- *
- * Assumptions:
- * 1. Packet starts with the frame control (FC) byte
- * at skb->data.
- * 2. The 4-byte CRC is not appended to the buffer or
- * included in the length.
- * 3. Packet length (skb->len) is from FC to end of
- * data, inclusive.
- * 4. The packet length does not exceed the maximum
- * FDDI LLC frame length of 4491 bytes.
- * 5. The entire packet is contained in a physically
- * contiguous, non-cached, locked memory space
- * comprised of a single buffer pointed to by
- * skb->data.
- * 6. The physical address of the start of packet
- * can be determined from the virtual address
- * by using pci_map_single() and is only 32-bits
- * wide.
- */
-
- p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
- p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
- skb->len, DMA_TO_DEVICE);
-
- /*
- * Verify that descriptor is actually available
- *
- * Note: If descriptor isn't available, return 1 which tells
- * the upper layer to requeue the packet for later
- * transmission.
- *
- * We need to ensure that the producer never reaches the
- * completion, except to indicate that the queue is empty.
- */
-
- if (prod == bp->rcv_xmt_reg.index.xmt_comp)
- {
- skb_pull(skb,3);
- spin_unlock_irqrestore(&bp->lock, flags);
- return NETDEV_TX_BUSY; /* requeue packet for later */
- }
-
- /*
- * Save info for this packet for xmt done indication routine
- *
- * Normally, we'd save the producer index in the p_xmt_drv_descr
- * structure so that we'd have it handy when we complete this
- * packet later (in dfx_xmt_done). However, since the current
- * transmit architecture guarantees a single fragment for the
- * entire packet, we can simply bump the completion index by
- * one (1) for each completed packet.
- *
- * Note: If this assumption changes and we're presented with
- * an inconsistent number of transmit fragments for packet
- * data, we'll need to modify this code to save the current
- * transmit producer index.
- */
-
- p_xmt_drv_descr->p_skb = skb;
-
- /* Update Type 2 register */
-
- bp->rcv_xmt_reg.index.xmt_prod = prod;
- dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
- spin_unlock_irqrestore(&bp->lock, flags);
- netif_wake_queue(dev);
- return NETDEV_TX_OK; /* packet queued to adapter */
- }
-
-
-/*
- * ================
- * = dfx_xmt_done =
- * ================
- *
- * Overview:
- * Processes all frames that have been transmitted.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * For all consumed transmit descriptors that have not
- * yet been completed, we'll free the skb we were holding
- * onto using dev_kfree_skb and bump the appropriate
- * counters.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * The Type 2 register is not updated in this routine. It is
- * assumed that it will be updated in the ISR when dfx_xmt_done
- * returns.
- *
- * Side Effects:
- * None
- */
-
-static int dfx_xmt_done(DFX_board_t *bp)
- {
- XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
- PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
- u8 comp; /* local transmit completion index */
- int freed = 0; /* buffers freed */
-
- /* Service all consumed transmit frames */
-
- p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
- while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
- {
- /* Get pointer to the transmit driver descriptor block information */
-
- p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
-
- /* Increment transmit counters */
-
- bp->xmt_total_frames++;
- bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
-
- /* Return skb to operating system */
- comp = bp->rcv_xmt_reg.index.xmt_comp;
- dma_unmap_single(bp->bus_dev,
- bp->descr_block_virt->xmt_data[comp].long_1,
- p_xmt_drv_descr->p_skb->len,
- DMA_TO_DEVICE);
- dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
-
- /*
- * Move to start of next packet by updating completion index
- *
- * Here we assume that a transmit packet request is always
- * serviced by posting one fragment. We can therefore
- * simplify the completion code by incrementing the
- * completion index by one. This code will need to be
- * modified if this assumption changes. See comments
- * in dfx_xmt_queue_pkt for more details.
- */
-
- bp->rcv_xmt_reg.index.xmt_comp += 1;
- freed++;
- }
- return freed;
- }
-
-
-/*
- * =================
- * = dfx_rcv_flush =
- * =================
- *
- * Overview:
- * Remove all skb's in the receive ring.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * Free's all the dynamically allocated skb's that are
- * currently attached to the device receive ring. This
- * function is typically only used when the device is
- * initialized or reinitialized.
- *
- * Return Codes:
- * None
- *
- * Side Effects:
- * None
- */
-#ifdef DYNAMIC_BUFFERS
-static void dfx_rcv_flush( DFX_board_t *bp )
- {
- int i, j;
-
- for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
- for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
- {
- struct sk_buff *skb;
- skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
- if (skb)
- dev_kfree_skb(skb);
- bp->p_rcv_buff_va[i+j] = NULL;
- }
-
- }
-#else
-static inline void dfx_rcv_flush( DFX_board_t *bp )
-{
-}
-#endif /* DYNAMIC_BUFFERS */
-
-/*
- * =================
- * = dfx_xmt_flush =
- * =================
- *
- * Overview:
- * Processes all frames whether they've been transmitted
- * or not.
- *
- * Returns:
- * None
- *
- * Arguments:
- * bp - pointer to board information
- *
- * Functional Description:
- * For all produced transmit descriptors that have not
- * yet been completed, we'll free the skb we were holding
- * onto using dev_kfree_skb and bump the appropriate
- * counters. Of course, it's possible that some of
- * these transmit requests actually did go out, but we
- * won't make that distinction here. Finally, we'll
- * update the consumer index to match the producer.
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * This routine does NOT update the Type 2 register. It
- * is assumed that this routine is being called during a
- * transmit flush interrupt, or a shutdown or close routine.
- *
- * Side Effects:
- * None
- */
-
-static void dfx_xmt_flush( DFX_board_t *bp )
- {
- u32 prod_cons; /* rcv/xmt consumer block longword */
- XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
- u8 comp; /* local transmit completion index */
-
- /* Flush all outstanding transmit frames */
-
- while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
- {
- /* Get pointer to the transmit driver descriptor block information */
-
- p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
-
- /* Return skb to operating system */
- comp = bp->rcv_xmt_reg.index.xmt_comp;
- dma_unmap_single(bp->bus_dev,
- bp->descr_block_virt->xmt_data[comp].long_1,
- p_xmt_drv_descr->p_skb->len,
- DMA_TO_DEVICE);
- dev_kfree_skb(p_xmt_drv_descr->p_skb);
-
- /* Increment transmit error counter */
-
- bp->xmt_discards++;
-
- /*
- * Move to start of next packet by updating completion index
- *
- * Here we assume that a transmit packet request is always
- * serviced by posting one fragment. We can therefore
- * simplify the completion code by incrementing the
- * completion index by one. This code will need to be
- * modified if this assumption changes. See comments
- * in dfx_xmt_queue_pkt for more details.
- */
-
- bp->rcv_xmt_reg.index.xmt_comp += 1;
- }
-
- /* Update the transmit consumer index in the consumer block */
-
- prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
- prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
- bp->cons_block_virt->xmt_rcv_data = prod_cons;
- }
-
-/*
- * ==================
- * = dfx_unregister =
- * ==================
- *
- * Overview:
- * Shuts down an FDDI controller
- *
- * Returns:
- * Condition code
- *
- * Arguments:
- * bdev - pointer to device information
- *
- * Functional Description:
- *
- * Return Codes:
- * None
- *
- * Assumptions:
- * It compiles so it should work :-( (PCI cards do :-)
- *
- * Side Effects:
- * Device structures for FDDI adapters (fddi0, fddi1, etc) are
- * freed.
- */
-static void __devexit dfx_unregister(struct device *bdev)
-{
- struct net_device *dev = dev_get_drvdata(bdev);
- DFX_board_t *bp = netdev_priv(dev);
- int dfx_bus_pci = DFX_BUS_PCI(bdev);
- int dfx_bus_tc = DFX_BUS_TC(bdev);
- int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
- resource_size_t bar_start = 0; /* pointer to port */
- resource_size_t bar_len = 0; /* resource length */
- int alloc_size; /* total buffer size used */
-
- unregister_netdev(dev);
-
- alloc_size = sizeof(PI_DESCR_BLOCK) +
- PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
-#ifndef DYNAMIC_BUFFERS
- (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
-#endif
- sizeof(PI_CONSUMER_BLOCK) +
- (PI_ALIGN_K_DESC_BLK - 1);
- if (bp->kmalloced)
- dma_free_coherent(bdev, alloc_size,
- bp->kmalloced, bp->kmalloced_dma);
-
- dfx_bus_uninit(dev);
-
- dfx_get_bars(bdev, &bar_start, &bar_len);
- if (dfx_use_mmio) {
- iounmap(bp->base.mem);
- release_mem_region(bar_start, bar_len);
- } else
- release_region(bar_start, bar_len);
-
- if (dfx_bus_pci)
- pci_disable_device(to_pci_dev(bdev));
-
- free_netdev(dev);
-}
-
-
-static int __devinit __maybe_unused dfx_dev_register(struct device *);
-static int __devexit __maybe_unused dfx_dev_unregister(struct device *);
-
-#ifdef CONFIG_PCI
-static int __devinit dfx_pci_register(struct pci_dev *,
- const struct pci_device_id *);
-static void __devexit dfx_pci_unregister(struct pci_dev *);
-
-static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
- { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
- { }
-};
-MODULE_DEVICE_TABLE(pci, dfx_pci_table);
-
-static struct pci_driver dfx_pci_driver = {
- .name = "defxx",
- .id_table = dfx_pci_table,
- .probe = dfx_pci_register,
- .remove = __devexit_p(dfx_pci_unregister),
-};
-
-static __devinit int dfx_pci_register(struct pci_dev *pdev,
- const struct pci_device_id *ent)
-{
- return dfx_register(&pdev->dev);
-}
-
-static void __devexit dfx_pci_unregister(struct pci_dev *pdev)
-{
- dfx_unregister(&pdev->dev);
-}
-#endif /* CONFIG_PCI */
-
-#ifdef CONFIG_EISA
-static struct eisa_device_id dfx_eisa_table[] = {
- { "DEC3001", DEFEA_PROD_ID_1 },
- { "DEC3002", DEFEA_PROD_ID_2 },
- { "DEC3003", DEFEA_PROD_ID_3 },
- { "DEC3004", DEFEA_PROD_ID_4 },
- { }
-};
-MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
-
-static struct eisa_driver dfx_eisa_driver = {
- .id_table = dfx_eisa_table,
- .driver = {
- .name = "defxx",
- .bus = &eisa_bus_type,
- .probe = dfx_dev_register,
- .remove = __devexit_p(dfx_dev_unregister),
- },
-};
-#endif /* CONFIG_EISA */
-
-#ifdef CONFIG_TC
-static struct tc_device_id const dfx_tc_table[] = {
- { "DEC ", "PMAF-FA " },
- { "DEC ", "PMAF-FD " },
- { "DEC ", "PMAF-FS " },
- { "DEC ", "PMAF-FU " },
- { }
-};
-MODULE_DEVICE_TABLE(tc, dfx_tc_table);
-
-static struct tc_driver dfx_tc_driver = {
- .id_table = dfx_tc_table,
- .driver = {
- .name = "defxx",
- .bus = &tc_bus_type,
- .probe = dfx_dev_register,
- .remove = __devexit_p(dfx_dev_unregister),
- },
-};
-#endif /* CONFIG_TC */
-
-static int __devinit __maybe_unused dfx_dev_register(struct device *dev)
-{
- int status;
-
- status = dfx_register(dev);
- if (!status)
- get_device(dev);
- return status;
-}
-
-static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev)
-{
- put_device(dev);
- dfx_unregister(dev);
- return 0;
-}
-
-
-static int __devinit dfx_init(void)
-{
- int status;
-
- status = pci_register_driver(&dfx_pci_driver);
- if (!status)
- status = eisa_driver_register(&dfx_eisa_driver);
- if (!status)
- status = tc_register_driver(&dfx_tc_driver);
- return status;
-}
-
-static void __devexit dfx_cleanup(void)
-{
- tc_unregister_driver(&dfx_tc_driver);
- eisa_driver_unregister(&dfx_eisa_driver);
- pci_unregister_driver(&dfx_pci_driver);
-}
-
-module_init(dfx_init);
-module_exit(dfx_cleanup);
-MODULE_AUTHOR("Lawrence V. Stefani");
-MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
- DRV_VERSION " " DRV_RELDATE);
-MODULE_LICENSE("GPL");