aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/kernel/i8253.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/i8253.c')
-rw-r--r--arch/x86/kernel/i8253.c208
1 files changed, 208 insertions, 0 deletions
diff --git a/arch/x86/kernel/i8253.c b/arch/x86/kernel/i8253.c
new file mode 100644
index 000000000000..5cc8841ca2c6
--- /dev/null
+++ b/arch/x86/kernel/i8253.c
@@ -0,0 +1,208 @@
+/*
+ * 8253/PIT functions
+ *
+ */
+#include <linux/clockchips.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/jiffies.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+
+#include <asm/smp.h>
+#include <asm/delay.h>
+#include <asm/i8253.h>
+#include <asm/io.h>
+
+DEFINE_SPINLOCK(i8253_lock);
+EXPORT_SYMBOL(i8253_lock);
+
+/*
+ * HPET replaces the PIT, when enabled. So we need to know, which of
+ * the two timers is used
+ */
+struct clock_event_device *global_clock_event;
+
+/*
+ * Initialize the PIT timer.
+ *
+ * This is also called after resume to bring the PIT into operation again.
+ */
+static void init_pit_timer(enum clock_event_mode mode,
+ struct clock_event_device *evt)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&i8253_lock, flags);
+
+ switch(mode) {
+ case CLOCK_EVT_MODE_PERIODIC:
+ /* binary, mode 2, LSB/MSB, ch 0 */
+ outb_p(0x34, PIT_MODE);
+ outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
+ outb(LATCH >> 8 , PIT_CH0); /* MSB */
+ break;
+
+ case CLOCK_EVT_MODE_SHUTDOWN:
+ case CLOCK_EVT_MODE_UNUSED:
+ if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
+ evt->mode == CLOCK_EVT_MODE_ONESHOT) {
+ outb_p(0x30, PIT_MODE);
+ outb_p(0, PIT_CH0);
+ outb_p(0, PIT_CH0);
+ }
+ break;
+
+ case CLOCK_EVT_MODE_ONESHOT:
+ /* One shot setup */
+ outb_p(0x38, PIT_MODE);
+ break;
+
+ case CLOCK_EVT_MODE_RESUME:
+ /* Nothing to do here */
+ break;
+ }
+ spin_unlock_irqrestore(&i8253_lock, flags);
+}
+
+/*
+ * Program the next event in oneshot mode
+ *
+ * Delta is given in PIT ticks
+ */
+static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&i8253_lock, flags);
+ outb_p(delta & 0xff , PIT_CH0); /* LSB */
+ outb(delta >> 8 , PIT_CH0); /* MSB */
+ spin_unlock_irqrestore(&i8253_lock, flags);
+
+ return 0;
+}
+
+/*
+ * On UP the PIT can serve all of the possible timer functions. On SMP systems
+ * it can be solely used for the global tick.
+ *
+ * The profiling and update capabilites are switched off once the local apic is
+ * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
+ * !using_apic_timer decisions in do_timer_interrupt_hook()
+ */
+struct clock_event_device pit_clockevent = {
+ .name = "pit",
+ .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
+ .set_mode = init_pit_timer,
+ .set_next_event = pit_next_event,
+ .shift = 32,
+ .irq = 0,
+};
+
+/*
+ * Initialize the conversion factor and the min/max deltas of the clock event
+ * structure and register the clock event source with the framework.
+ */
+void __init setup_pit_timer(void)
+{
+ /*
+ * Start pit with the boot cpu mask and make it global after the
+ * IO_APIC has been initialized.
+ */
+ pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
+ pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
+ pit_clockevent.max_delta_ns =
+ clockevent_delta2ns(0x7FFF, &pit_clockevent);
+ pit_clockevent.min_delta_ns =
+ clockevent_delta2ns(0xF, &pit_clockevent);
+ clockevents_register_device(&pit_clockevent);
+ global_clock_event = &pit_clockevent;
+}
+
+#ifndef CONFIG_X86_64
+/*
+ * Since the PIT overflows every tick, its not very useful
+ * to just read by itself. So use jiffies to emulate a free
+ * running counter:
+ */
+static cycle_t pit_read(void)
+{
+ unsigned long flags;
+ int count;
+ u32 jifs;
+ static int old_count;
+ static u32 old_jifs;
+
+ spin_lock_irqsave(&i8253_lock, flags);
+ /*
+ * Although our caller may have the read side of xtime_lock,
+ * this is now a seqlock, and we are cheating in this routine
+ * by having side effects on state that we cannot undo if
+ * there is a collision on the seqlock and our caller has to
+ * retry. (Namely, old_jifs and old_count.) So we must treat
+ * jiffies as volatile despite the lock. We read jiffies
+ * before latching the timer count to guarantee that although
+ * the jiffies value might be older than the count (that is,
+ * the counter may underflow between the last point where
+ * jiffies was incremented and the point where we latch the
+ * count), it cannot be newer.
+ */
+ jifs = jiffies;
+ outb_p(0x00, PIT_MODE); /* latch the count ASAP */
+ count = inb_p(PIT_CH0); /* read the latched count */
+ count |= inb_p(PIT_CH0) << 8;
+
+ /* VIA686a test code... reset the latch if count > max + 1 */
+ if (count > LATCH) {
+ outb_p(0x34, PIT_MODE);
+ outb_p(LATCH & 0xff, PIT_CH0);
+ outb(LATCH >> 8, PIT_CH0);
+ count = LATCH - 1;
+ }
+
+ /*
+ * It's possible for count to appear to go the wrong way for a
+ * couple of reasons:
+ *
+ * 1. The timer counter underflows, but we haven't handled the
+ * resulting interrupt and incremented jiffies yet.
+ * 2. Hardware problem with the timer, not giving us continuous time,
+ * the counter does small "jumps" upwards on some Pentium systems,
+ * (see c't 95/10 page 335 for Neptun bug.)
+ *
+ * Previous attempts to handle these cases intelligently were
+ * buggy, so we just do the simple thing now.
+ */
+ if (count > old_count && jifs == old_jifs) {
+ count = old_count;
+ }
+ old_count = count;
+ old_jifs = jifs;
+
+ spin_unlock_irqrestore(&i8253_lock, flags);
+
+ count = (LATCH - 1) - count;
+
+ return (cycle_t)(jifs * LATCH) + count;
+}
+
+static struct clocksource clocksource_pit = {
+ .name = "pit",
+ .rating = 110,
+ .read = pit_read,
+ .mask = CLOCKSOURCE_MASK(32),
+ .mult = 0,
+ .shift = 20,
+};
+
+static int __init init_pit_clocksource(void)
+{
+ if (num_possible_cpus() > 1) /* PIT does not scale! */
+ return 0;
+
+ clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
+ return clocksource_register(&clocksource_pit);
+}
+arch_initcall(init_pit_clocksource);
+
+#endif