aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/math-emu/op-4.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/math-emu/op-4.h')
-rw-r--r--arch/powerpc/math-emu/op-4.h317
1 files changed, 0 insertions, 317 deletions
diff --git a/arch/powerpc/math-emu/op-4.h b/arch/powerpc/math-emu/op-4.h
deleted file mode 100644
index c9ae626070da..000000000000
--- a/arch/powerpc/math-emu/op-4.h
+++ /dev/null
@@ -1,317 +0,0 @@
-/*
- * Basic four-word fraction declaration and manipulation.
- *
- * When adding quadword support for 32 bit machines, we need
- * to be a little careful as double multiply uses some of these
- * macros: (in op-2.h)
- * _FP_MUL_MEAT_2_wide() uses _FP_FRAC_DECL_4, _FP_FRAC_WORD_4,
- * _FP_FRAC_ADD_4, _FP_FRAC_SRS_4
- * _FP_MUL_MEAT_2_gmp() uses _FP_FRAC_SRS_4 (and should use
- * _FP_FRAC_DECL_4: it appears to be broken and is not used
- * anywhere anyway. )
- *
- * I've now fixed all the macros that were here from the sparc64 code.
- * [*none* of the shift macros were correct!] -- PMM 02/1998
- *
- * The only quadword stuff that remains to be coded is:
- * 1) the conversion to/from ints, which requires
- * that we check (in op-common.h) that the following do the right thing
- * for quadwords: _FP_TO_INT(Q,4,r,X,rsz,rsg), _FP_FROM_INT(Q,4,X,r,rs,rt)
- * 2) multiply, divide and sqrt, which require:
- * _FP_MUL_MEAT_4_*(R,X,Y), _FP_DIV_MEAT_4_*(R,X,Y), _FP_SQRT_MEAT_4(R,S,T,X,q),
- * This also needs _FP_MUL_MEAT_Q and _FP_DIV_MEAT_Q to be defined to
- * some suitable _FP_MUL_MEAT_4_* macros in sfp-machine.h.
- * [we're free to choose whatever FP_MUL_MEAT_4_* macros we need for
- * these; they are used nowhere else. ]
- */
-
-#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4]
-#define _FP_FRAC_COPY_4(D,S) \
- (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \
- D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
-/* The _FP_FRAC_SET_n(X,I) macro is intended for use with another
- * macro such as _FP_ZEROFRAC_n which returns n comma separated values.
- * The result is that we get an expansion of __FP_FRAC_SET_n(X,I0,I1,I2,I3)
- * which just assigns the In values to the array X##_f[].
- * This is why the number of parameters doesn't appear to match
- * at first glance... -- PMM
- */
-#define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I)
-#define _FP_FRAC_HIGH_4(X) (X##_f[3])
-#define _FP_FRAC_LOW_4(X) (X##_f[0])
-#define _FP_FRAC_WORD_4(X,w) (X##_f[w])
-
-#define _FP_FRAC_SLL_4(X,N) \
- do { \
- _FP_I_TYPE _up, _down, _skip, _i; \
- _skip = (N) / _FP_W_TYPE_SIZE; \
- _up = (N) % _FP_W_TYPE_SIZE; \
- _down = _FP_W_TYPE_SIZE - _up; \
- for (_i = 3; _i > _skip; --_i) \
- X##_f[_i] = X##_f[_i-_skip] << _up | X##_f[_i-_skip-1] >> _down; \
-/* bugfixed: was X##_f[_i] <<= _up; -- PMM 02/1998 */ \
- X##_f[_i] = X##_f[0] << _up; \
- for (--_i; _i >= 0; --_i) \
- X##_f[_i] = 0; \
- } while (0)
-
-/* This one was broken too */
-#define _FP_FRAC_SRL_4(X,N) \
- do { \
- _FP_I_TYPE _up, _down, _skip, _i; \
- _skip = (N) / _FP_W_TYPE_SIZE; \
- _down = (N) % _FP_W_TYPE_SIZE; \
- _up = _FP_W_TYPE_SIZE - _down; \
- for (_i = 0; _i < 3-_skip; ++_i) \
- X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up; \
- X##_f[_i] = X##_f[3] >> _down; \
- for (++_i; _i < 4; ++_i) \
- X##_f[_i] = 0; \
- } while (0)
-
-
-/* Right shift with sticky-lsb.
- * What this actually means is that we do a standard right-shift,
- * but that if any of the bits that fall off the right hand side
- * were one then we always set the LSbit.
- */
-#define _FP_FRAC_SRS_4(X,N,size) \
- do { \
- _FP_I_TYPE _up, _down, _skip, _i; \
- _FP_W_TYPE _s; \
- _skip = (N) / _FP_W_TYPE_SIZE; \
- _down = (N) % _FP_W_TYPE_SIZE; \
- _up = _FP_W_TYPE_SIZE - _down; \
- for (_s = _i = 0; _i < _skip; ++_i) \
- _s |= X##_f[_i]; \
- _s |= X##_f[_i] << _up; \
-/* s is now != 0 if we want to set the LSbit */ \
- for (_i = 0; _i < 3-_skip; ++_i) \
- X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up; \
- X##_f[_i] = X##_f[3] >> _down; \
- for (++_i; _i < 4; ++_i) \
- X##_f[_i] = 0; \
- /* don't fix the LSB until the very end when we're sure f[0] is stable */ \
- X##_f[0] |= (_s != 0); \
- } while (0)
-
-#define _FP_FRAC_ADD_4(R,X,Y) \
- __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
- X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
- Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
-
-#define _FP_FRAC_SUB_4(R,X,Y) \
- __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
- X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
- Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
-
-#define _FP_FRAC_ADDI_4(X,I) \
- __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
-
-#define _FP_ZEROFRAC_4 0,0,0,0
-#define _FP_MINFRAC_4 0,0,0,1
-
-#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
-#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0)
-#define _FP_FRAC_OVERP_4(fs,X) (X##_f[0] & _FP_OVERFLOW_##fs)
-
-#define _FP_FRAC_EQ_4(X,Y) \
- (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \
- && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
-
-#define _FP_FRAC_GT_4(X,Y) \
- (X##_f[3] > Y##_f[3] || \
- (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
- (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
- (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \
- )) \
- )) \
- )
-
-#define _FP_FRAC_GE_4(X,Y) \
- (X##_f[3] > Y##_f[3] || \
- (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
- (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
- (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \
- )) \
- )) \
- )
-
-
-#define _FP_FRAC_CLZ_4(R,X) \
- do { \
- if (X##_f[3]) \
- { \
- __FP_CLZ(R,X##_f[3]); \
- } \
- else if (X##_f[2]) \
- { \
- __FP_CLZ(R,X##_f[2]); \
- R += _FP_W_TYPE_SIZE; \
- } \
- else if (X##_f[1]) \
- { \
- __FP_CLZ(R,X##_f[2]); \
- R += _FP_W_TYPE_SIZE*2; \
- } \
- else \
- { \
- __FP_CLZ(R,X##_f[0]); \
- R += _FP_W_TYPE_SIZE*3; \
- } \
- } while(0)
-
-
-#define _FP_UNPACK_RAW_4(fs, X, val) \
- do { \
- union _FP_UNION_##fs _flo; _flo.flt = (val); \
- X##_f[0] = _flo.bits.frac0; \
- X##_f[1] = _flo.bits.frac1; \
- X##_f[2] = _flo.bits.frac2; \
- X##_f[3] = _flo.bits.frac3; \
- X##_e = _flo.bits.exp; \
- X##_s = _flo.bits.sign; \
- } while (0)
-
-#define _FP_PACK_RAW_4(fs, val, X) \
- do { \
- union _FP_UNION_##fs _flo; \
- _flo.bits.frac0 = X##_f[0]; \
- _flo.bits.frac1 = X##_f[1]; \
- _flo.bits.frac2 = X##_f[2]; \
- _flo.bits.frac3 = X##_f[3]; \
- _flo.bits.exp = X##_e; \
- _flo.bits.sign = X##_s; \
- (val) = _flo.flt; \
- } while (0)
-
-
-/*
- * Internals
- */
-
-#define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \
- (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
-
-#ifndef __FP_FRAC_ADD_4
-#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
- do { \
- int _c1, _c2, _c3; \
- r0 = x0 + y0; \
- _c1 = r0 < x0; \
- r1 = x1 + y1; \
- _c2 = r1 < x1; \
- r1 += _c1; \
- _c2 |= r1 < _c1; \
- r2 = x2 + y2; \
- _c3 = r2 < x2; \
- r2 += _c2; \
- _c3 |= r2 < _c2; \
- r3 = x3 + y3 + _c3; \
- } while (0)
-#endif
-
-#ifndef __FP_FRAC_SUB_4
-#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
- do { \
- int _c1, _c2, _c3; \
- r0 = x0 - y0; \
- _c1 = r0 > x0; \
- r1 = x1 - y1; \
- _c2 = r1 > x1; \
- r1 -= _c1; \
- _c2 |= r1 > _c1; \
- r2 = x2 - y2; \
- _c3 = r2 > x2; \
- r2 -= _c2; \
- _c3 |= r2 > _c2; \
- r3 = x3 - y3 - _c3; \
- } while (0)
-#endif
-
-#ifndef __FP_FRAC_ADDI_4
-/* I always wanted to be a lisp programmer :-> */
-#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \
- (x3 += ((x2 += ((x1 += ((x0 += i) < x0)) < x1) < x2)))
-#endif
-
-/* Convert FP values between word sizes. This appears to be more
- * complicated than I'd have expected it to be, so these might be
- * wrong... These macros are in any case somewhat bogus because they
- * use information about what various FRAC_n variables look like
- * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
- * the ones in op-2.h and op-1.h.
- */
-#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \
- do { \
- _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \
- _FP_WFRACBITS_##sfs); \
- D##_f = S##_f[0]; \
- } while (0)
-
-#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \
- do { \
- _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \
- _FP_WFRACBITS_##sfs); \
- D##_f0 = S##_f[0]; \
- D##_f1 = S##_f[1]; \
- } while (0)
-
-/* Assembly/disassembly for converting to/from integral types.
- * No shifting or overflow handled here.
- */
-/* Put the FP value X into r, which is an integer of size rsize. */
-#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
- do { \
- if (rsize <= _FP_W_TYPE_SIZE) \
- r = X##_f[0]; \
- else if (rsize <= 2*_FP_W_TYPE_SIZE) \
- { \
- r = X##_f[1]; \
- r <<= _FP_W_TYPE_SIZE; \
- r += X##_f[0]; \
- } \
- else \
- { \
- /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \
- /* and int == 4words as a single case. */ \
- r = X##_f[3]; \
- r <<= _FP_W_TYPE_SIZE; \
- r += X##_f[2]; \
- r <<= _FP_W_TYPE_SIZE; \
- r += X##_f[1]; \
- r <<= _FP_W_TYPE_SIZE; \
- r += X##_f[0]; \
- } \
- } while (0)
-
-/* "No disassemble Number Five!" */
-/* move an integer of size rsize into X's fractional part. We rely on
- * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
- * having to mask the values we store into it.
- */
-#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
- do { \
- X##_f[0] = r; \
- X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \
- X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
- X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
- } while (0)
-
-#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \
- do { \
- D##_f[0] = S##_f; \
- D##_f[1] = D##_f[2] = D##_f[3] = 0; \
- _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \
- } while (0)
-
-#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \
- do { \
- D##_f[0] = S##_f0; \
- D##_f[1] = S##_f1; \
- D##_f[2] = D##_f[3] = 0; \
- _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \
- } while (0)
-
-/* FIXME! This has to be written */
-#define _FP_SQRT_MEAT_4(R, S, T, X, q)