aboutsummaryrefslogtreecommitdiff
path: root/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt')
-rw-r--r--Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt360
1 files changed, 360 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
new file mode 100644
index 000000000000..11216f09e596
--- /dev/null
+++ b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
@@ -0,0 +1,360 @@
+===========================================================
+Energy cost bindings for Energy Aware Scheduling
+===========================================================
+
+===========================================================
+1 - Introduction
+===========================================================
+
+This note specifies bindings required for energy-aware scheduling
+(EAS)[1]. Historically, the scheduler's primary objective has been
+performance. EAS aims to provide an alternative objective - energy
+efficiency. EAS relies on a simple platform energy cost model to
+guide scheduling decisions. The model only considers the CPU
+subsystem.
+
+This note is aligned with the definition of the layout of physical
+CPUs in the system as described in the ARM topology binding
+description [2]. The concept is applicable to any system so long as
+the cost model data is provided for those processing elements in
+that system's topology that EAS is required to service.
+
+Processing elements refer to hardware threads, CPUs and clusters of
+related CPUs in increasing order of hierarchy.
+
+EAS requires two key cost metrics - busy costs and idle costs. Busy
+costs comprise of a list of compute capacities for the processing
+element in question and the corresponding power consumption at that
+capacity. Idle costs comprise of a list of power consumption values
+for each idle state [C-state] that the processing element supports.
+For a detailed description of these metrics, their derivation and
+their use see [3].
+
+These cost metrics are required for processing elements in all
+scheduling domain levels that EAS is required to service.
+
+===========================================================
+2 - energy-costs node
+===========================================================
+
+Energy costs for the processing elements in scheduling domains that
+EAS is required to service are defined in the energy-costs node
+which acts as a container for the actual per processing element cost
+nodes. A single energy-costs node is required for a given system.
+
+- energy-costs node
+
+ Usage: Required
+
+ Description: The energy-costs node is a container node and
+ it's sub-nodes describe costs for each processing element at
+ all scheduling domain levels that EAS is required to
+ service.
+
+ Node name must be "energy-costs".
+
+ The energy-costs node's parent node must be the cpus node.
+
+ The energy-costs node's child nodes can be:
+
+ - one or more cost nodes.
+
+ Any other configuration is considered invalid.
+
+The energy-costs node can only contain a single type of child node
+whose bindings are described in paragraph 4.
+
+===========================================================
+3 - energy-costs node child nodes naming convention
+===========================================================
+
+energy-costs child nodes must follow a naming convention where the
+node name must be "thread-costN", "core-costN", "cluster-costN"
+depending on whether the costs in the node are for a thread, core or
+cluster. N (where N = {0, 1, ...}) is the node number and has no
+bearing to the OS' logical thread, core or cluster index.
+
+===========================================================
+4 - cost node bindings
+===========================================================
+
+Bindings for cost nodes are defined as follows:
+
+- cluster-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple clusters and each cluster
+ serviced by EAS must have a corresponding cluster-costs
+ node.
+
+ The cluster-cost node name must be "cluster-costN" as
+ described in 3 above.
+
+ A cluster-cost node must be a leaf node with no children.
+
+ Properties for cluster-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- core-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple cores and each core serviced by
+ EAS must have a corresponding core-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for core-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- thread-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain cores with multiple hardware threads and
+ each thread serviced by EAS must have a corresponding
+ thread-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for thread-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+===========================================================
+5 - Cost node properties
+==========================================================
+
+All cost node types must have only the following properties:
+
+- busy-cost-data
+
+ Usage: required
+ Value type: An array of 2-item tuples. Each item is of type
+ u32.
+ Definition: The first item in the tuple is the capacity
+ value as described in [3]. The second item in the tuple is
+ the energy cost value as described in [3].
+
+- idle-cost-data
+
+ Usage: required
+ Value type: An array of 1-item tuples. The item is of type
+ u32.
+ Definition: The item in the tuple is the energy cost value
+ as described in [3].
+
+===========================================================
+4 - Extensions to the cpu node
+===========================================================
+
+The cpu node is extended with a property that establishes the
+connection between the processing element represented by the cpu
+node and the cost-nodes associated with this processing element.
+
+The connection is expressed in line with the topological hierarchy
+that this processing element belongs to starting with the level in
+the hierarchy that this processing element itself belongs to through
+to the highest level that EAS is required to service. The
+connection cannot be sparse and must be contiguous from the
+processing element's level through to the highest desired level. The
+highest desired level must be the same for all processing elements.
+
+Example: Given that a cpu node may represent a thread that is a part
+of a core, this property may contain multiple elements which
+associate the thread with cost nodes describing the costs for the
+thread itself, the core the thread belongs to, the cluster the core
+belongs to and so on. The elements must be ordered from the lowest
+level nodes to the highest desired level that EAS must service. The
+highest desired level must be the same for all cpu nodes. The
+elements must not be sparse: there must be elements for the current
+thread, the next level of hierarchy (core) and so on without any
+'holes'.
+
+Example: Given that a cpu node may represent a core that is a part
+of a cluster of related cpus this property may contain multiple
+elements which associate the core with cost nodes describing the
+costs for the core itself, the cluster the core belongs to and so
+on. The elements must be ordered from the lowest level nodes to the
+highest desired level that EAS must service. The highest desired
+level must be the same for all cpu nodes. The elements must not be
+sparse: there must be elements for the current thread, the next
+level of hierarchy (core) and so on without any 'holes'.
+
+If the system comprises of hierarchical clusters of clusters, this
+property will contain multiple associations with the relevant number
+of cluster elements in hierarchical order.
+
+Property added to the cpu node:
+
+- sched-energy-costs
+
+ Usage: required
+ Value type: List of phandles
+ Definition: a list of phandles to specific cost nodes in the
+ energy-costs parent node that correspond to the processing
+ element represented by this cpu node in hierarchical order
+ of topology.
+
+ The order of phandles in the list is significant. The first
+ phandle is to the current processing element's own cost
+ node. Subsequent phandles are to higher hierarchical level
+ cost nodes up until the maximum level that EAS is to
+ service.
+
+ All cpu nodes must have the same highest level cost node.
+
+ The phandle list must not be sparsely populated with handles
+ to non-contiguous hierarchical levels. See commentary above
+ for clarity.
+
+ Any other configuration is invalid.
+
+===========================================================
+5 - Example dts
+===========================================================
+
+Example 1 (ARM 64-bit, 6-cpu system, two clusters of cpus, one
+cluster of 2 Cortex-A57 cpus, one cluster of 4 Cortex-A53 cpus):
+
+cpus {
+ #address-cells = <2>;
+ #size-cells = <0>;
+ .
+ .
+ .
+ A57_0: cpu@0 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x0>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A57_1: cpu@1 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x1>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A53_0: cpu@100 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x100>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_1: cpu@101 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x101>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_2: cpu@102 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x102>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_3: cpu@103 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x103>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ energy-costs {
+ CPU_COST_0: core-cost0 {
+ busy-cost-data = <
+ 417 168
+ 579 251
+ 744 359
+ 883 479
+ 1024 616
+ >;
+ idle-cost-data = <
+ 15
+ 0
+ >;
+ };
+ CPU_COST_1: core-cost1 {
+ busy-cost-data = <
+ 235 33
+ 302 46
+ 368 61
+ 406 76
+ 447 93
+ >;
+ idle-cost-data = <
+ 6
+ 0
+ >;
+ };
+ CLUSTER_COST_0: cluster-cost0 {
+ busy-cost-data = <
+ 417 24
+ 579 32
+ 744 43
+ 883 49
+ 1024 64
+ >;
+ idle-cost-data = <
+ 65
+ 24
+ >;
+ };
+ CLUSTER_COST_1: cluster-cost1 {
+ busy-cost-data = <
+ 235 26
+ 303 30
+ 368 39
+ 406 47
+ 447 57
+ >;
+ idle-cost-data = <
+ 56
+ 17
+ >;
+ };
+ };
+};
+
+===============================================================================
+[1] https://lkml.org/lkml/2015/5/12/728
+[2] Documentation/devicetree/bindings/topology.txt
+[3] Documentation/scheduler/sched-energy.txt