aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorViresh Kumar <viresh.kumar@linaro.org>2015-11-11 08:10:54 +0530
committerAlex Shi <alex.shi@linaro.org>2016-04-01 13:24:12 +0800
commit4a0b368adb397b991717213e317fc5dff57cac90 (patch)
treeda83781b0dec55bcebfdd942a77047b0a33a8257 /Documentation
parent9fbce7bb31236ba5219b6eaca54d8649576bbb9e (diff)
PM / OPP: Add "opp-supported-hw" binding
We may want to enable only a subset of OPPs, from the bigger list of OPPs, based on what version of the hardware we are running on. This would enable us to not duplicate OPP tables for every version of the hardware we support. To enable that, this patch defines a new property 'opp-supported-hw'. It can support any number of hierarchy levels of the versions the hardware follows. And based on the selected hardware versions, we can pick only the relevant OPPs at runtime. Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> (cherry picked from commit 1c4d12de2719dfdf27c6dab31e7a5641ee293c94) Signed-off-by: Alex Shi <alex.shi@linaro.org>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/devicetree/bindings/opp/opp.txt493
1 files changed, 493 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/opp/opp.txt b/Documentation/devicetree/bindings/opp/opp.txt
index 74499e5033fc..32bf3b984cad 100644
--- a/Documentation/devicetree/bindings/opp/opp.txt
+++ b/Documentation/devicetree/bindings/opp/opp.txt
@@ -23,3 +23,496 @@ cpu@0 {
198000 850000
>;
};
+
+Binding 2: operating-points-v2
+============================
+
+* Property: operating-points-v2
+
+Devices supporting OPPs must set their "operating-points-v2" property with
+phandle to a OPP table in their DT node. The OPP core will use this phandle to
+find the operating points for the device.
+
+Devices may want to choose OPP tables at runtime and so can provide a list of
+phandles here. But only *one* of them should be chosen at runtime. This must be
+accompanied by a corresponding "operating-points-names" property, to uniquely
+identify the OPP tables.
+
+If required, this can be extended for SoC vendor specfic bindings. Such bindings
+should be documented as Documentation/devicetree/bindings/power/<vendor>-opp.txt
+and should have a compatible description like: "operating-points-v2-<vendor>".
+
+Optional properties:
+- operating-points-names: Names of OPP tables (required if multiple OPP
+ tables are present), to uniquely identify them. The same list must be present
+ for all the CPUs which are sharing clock/voltage rails and hence the OPP
+ tables.
+
+* OPP Table Node
+
+This describes the OPPs belonging to a device. This node can have following
+properties:
+
+Required properties:
+- compatible: Allow OPPs to express their compatibility. It should be:
+ "operating-points-v2".
+
+- OPP nodes: One or more OPP nodes describing voltage-current-frequency
+ combinations. Their name isn't significant but their phandle can be used to
+ reference an OPP.
+
+Optional properties:
+- opp-shared: Indicates that device nodes using this OPP Table Node's phandle
+ switch their DVFS state together, i.e. they share clock/voltage/current lines.
+ Missing property means devices have independent clock/voltage/current lines,
+ but they share OPP tables.
+
+- status: Marks the OPP table enabled/disabled.
+
+
+* OPP Node
+
+This defines voltage-current-frequency combinations along with other related
+properties.
+
+Required properties:
+- opp-hz: Frequency in Hz, expressed as a 64-bit big-endian integer.
+
+Optional properties:
+- opp-microvolt: voltage in micro Volts.
+
+ A single regulator's voltage is specified with an array of size one or three.
+ Single entry is for target voltage and three entries are for <target min max>
+ voltages.
+
+ Entries for multiple regulators must be present in the same order as
+ regulators are specified in device's DT node.
+
+- opp-microamp: The maximum current drawn by the device in microamperes
+ considering system specific parameters (such as transients, process, aging,
+ maximum operating temperature range etc.) as necessary. This may be used to
+ set the most efficient regulator operating mode.
+
+ Should only be set if opp-microvolt is set for the OPP.
+
+ Entries for multiple regulators must be present in the same order as
+ regulators are specified in device's DT node. If this property isn't required
+ for few regulators, then this should be marked as zero for them. If it isn't
+ required for any regulator, then this property need not be present.
+
+- clock-latency-ns: Specifies the maximum possible transition latency (in
+ nanoseconds) for switching to this OPP from any other OPP.
+
+- turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is
+ available on some platforms, where the device can run over its operating
+ frequency for a short duration of time limited by the device's power, current
+ and thermal limits.
+
+- opp-suspend: Marks the OPP to be used during device suspend. Only one OPP in
+ the table should have this.
+
+- opp-supported-hw: This enables us to select only a subset of OPPs from the
+ larger OPP table, based on what version of the hardware we are running on. We
+ still can't have multiple nodes with the same opp-hz value in OPP table.
+
+ It's an user defined array containing a hierarchy of hardware version numbers,
+ supported by the OPP. For example: a platform with hierarchy of three levels
+ of versions (A, B and C), this field should be like <X Y Z>, where X
+ corresponds to Version hierarchy A, Y corresponds to version hierarchy B and Z
+ corresponds to version hierarchy C.
+
+ Each level of hierarchy is represented by a 32 bit value, and so there can be
+ only 32 different supported version per hierarchy. i.e. 1 bit per version. A
+ value of 0xFFFFFFFF will enable the OPP for all versions for that hierarchy
+ level. And a value of 0x00000000 will disable the OPP completely, and so we
+ never want that to happen.
+
+ If 32 values aren't sufficient for a version hierarchy, than that version
+ hierarchy can be contained in multiple 32 bit values. i.e. <X Y Z1 Z2> in the
+ above example, Z1 & Z2 refer to the version hierarchy Z.
+
+- status: Marks the node enabled/disabled.
+
+Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together.
+
+/ {
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a9";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu0_opp_table>;
+ };
+
+ cpu@1 {
+ compatible = "arm,cortex-a9";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu0_opp_table>;
+ };
+ };
+
+ cpu0_opp_table: opp_table0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp00 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <970000 975000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp01 {
+ opp-hz = /bits/ 64 <1100000000>;
+ opp-microvolt = <980000 1000000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp02 {
+ opp-hz = /bits/ 64 <1200000000>;
+ opp-microvolt = <1025000>;
+ clock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+};
+
+Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
+independently.
+
+/ {
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "qcom,krait";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@1 {
+ compatible = "qcom,krait";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@2 {
+ compatible = "qcom,krait";
+ reg = <2>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 2>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply2>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+
+ cpu@3 {
+ compatible = "qcom,krait";
+ reg = <3>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 3>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply3>;
+ operating-points-v2 = <&cpu_opp_table>;
+ };
+ };
+
+ cpu_opp_table: opp_table {
+ compatible = "operating-points-v2";
+
+ /*
+ * Missing opp-shared property means CPUs switch DVFS states
+ * independently.
+ */
+
+ opp00 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <970000 975000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp01 {
+ opp-hz = /bits/ 64 <1100000000>;
+ opp-microvolt = <980000 1000000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp02 {
+ opp-hz = /bits/ 64 <1200000000>;
+ opp-microvolt = <1025000>;
+ opp-microamp = <90000;
+ lock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+};
+
+Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
+DVFS state together.
+
+/ {
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cluster0_opp>;
+ };
+
+ cpu@1 {
+ compatible = "arm,cortex-a7";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 0>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply0>;
+ operating-points-v2 = <&cluster0_opp>;
+ };
+
+ cpu@100 {
+ compatible = "arm,cortex-a15";
+ reg = <100>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cluster1_opp>;
+ };
+
+ cpu@101 {
+ compatible = "arm,cortex-a15";
+ reg = <101>;
+ next-level-cache = <&L2>;
+ clocks = <&clk_controller 1>;
+ clock-names = "cpu";
+ cpu-supply = <&cpu_supply1>;
+ operating-points-v2 = <&cluster1_opp>;
+ };
+ };
+
+ cluster0_opp: opp_table0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp00 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <970000 975000 985000>;
+ opp-microamp = <70000>;
+ clock-latency-ns = <300000>;
+ opp-suspend;
+ };
+ opp01 {
+ opp-hz = /bits/ 64 <1100000000>;
+ opp-microvolt = <980000 1000000 1010000>;
+ opp-microamp = <80000>;
+ clock-latency-ns = <310000>;
+ };
+ opp02 {
+ opp-hz = /bits/ 64 <1200000000>;
+ opp-microvolt = <1025000>;
+ opp-microamp = <90000>;
+ clock-latency-ns = <290000>;
+ turbo-mode;
+ };
+ };
+
+ cluster1_opp: opp_table1 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp10 {
+ opp-hz = /bits/ 64 <1300000000>;
+ opp-microvolt = <1045000 1050000 1055000>;
+ opp-microamp = <95000>;
+ clock-latency-ns = <400000>;
+ opp-suspend;
+ };
+ opp11 {
+ opp-hz = /bits/ 64 <1400000000>;
+ opp-microvolt = <1075000>;
+ opp-microamp = <100000>;
+ clock-latency-ns = <400000>;
+ };
+ opp12 {
+ opp-hz = /bits/ 64 <1500000000>;
+ opp-microvolt = <1010000 1100000 1110000>;
+ opp-microamp = <95000>;
+ clock-latency-ns = <400000>;
+ turbo-mode;
+ };
+ };
+};
+
+Example 4: Handling multiple regulators
+
+/ {
+ cpus {
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ ...
+
+ cpu-supply = <&cpu_supply0>, <&cpu_supply1>, <&cpu_supply2>;
+ operating-points-v2 = <&cpu0_opp_table>;
+ };
+ };
+
+ cpu0_opp_table: opp_table0 {
+ compatible = "operating-points-v2";
+ opp-shared;
+
+ opp00 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <970000>, /* Supply 0 */
+ <960000>, /* Supply 1 */
+ <960000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <70000>, /* Supply 1 */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+
+ /* OR */
+
+ opp00 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <970000 975000 985000>, /* Supply 0 */
+ <960000 965000 975000>, /* Supply 1 */
+ <960000 965000 975000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <70000>, /* Supply 1 */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+
+ /* OR */
+
+ opp00 {
+ opp-hz = /bits/ 64 <1000000000>;
+ opp-microvolt = <970000 975000 985000>, /* Supply 0 */
+ <960000 965000 975000>, /* Supply 1 */
+ <960000 965000 975000>; /* Supply 2 */
+ opp-microamp = <70000>, /* Supply 0 */
+ <0>, /* Supply 1 doesn't need this */
+ <70000>; /* Supply 2 */
+ clock-latency-ns = <300000>;
+ };
+ };
+};
+
+Example 5: Multiple OPP tables
+
+/ {
+ cpus {
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ ...
+
+ cpu-supply = <&cpu_supply>
+ operating-points-v2 = <&cpu0_opp_table_slow>, <&cpu0_opp_table_fast>;
+ operating-points-names = "slow", "fast";
+ };
+ };
+
+ cpu0_opp_table_slow: opp_table_slow {
+ compatible = "operating-points-v2";
+ status = "okay";
+ opp-shared;
+
+ opp00 {
+ opp-hz = /bits/ 64 <600000000>;
+ ...
+ };
+
+ opp01 {
+ opp-hz = /bits/ 64 <800000000>;
+ ...
+ };
+ };
+
+ cpu0_opp_table_fast: opp_table_fast {
+ compatible = "operating-points-v2";
+ status = "okay";
+ opp-shared;
+
+ opp10 {
+ opp-hz = /bits/ 64 <1000000000>;
+ ...
+ };
+
+ opp11 {
+ opp-hz = /bits/ 64 <1100000000>;
+ ...
+ };
+ };
+};
+
+Example 6: opp-supported-hw
+(example: three level hierarchy of versions: cuts, substrate and process)
+
+/ {
+ cpus {
+ cpu@0 {
+ compatible = "arm,cortex-a7";
+ ...
+
+ cpu-supply = <&cpu_supply>
+ operating-points-v2 = <&cpu0_opp_table_slow>;
+ };
+ };
+
+ opp_table {
+ compatible = "operating-points-v2";
+ status = "okay";
+ opp-shared;
+
+ opp00 {
+ /*
+ * Supports all substrate and process versions for 0xF
+ * cuts, i.e. only first four cuts.
+ */
+ opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>
+ opp-hz = /bits/ 64 <600000000>;
+ opp-microvolt = <900000 915000 925000>;
+ ...
+ };
+
+ opp01 {
+ /*
+ * Supports:
+ * - cuts: only one, 6th cut (represented by 6th bit).
+ * - substrate: supports 16 different substrate versions
+ * - process: supports 9 different process versions
+ */
+ opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>
+ opp-hz = /bits/ 64 <800000000>;
+ opp-microvolt = <900000 915000 925000>;
+ ...
+ };
+ };
+};