/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef L1_CACHE_MASK #define L1_CACHE_MASK (L1_CACHE_BYTES - 1) #endif /* two interfaces on two btes */ #define MAX_INTERFACES_TO_TRY 4 static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface) { nodepda_t *tmp_nodepda; tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid)); return &tmp_nodepda->bte_if[interface]; } /************************************************************************ * Block Transfer Engine copy related functions. * ***********************************************************************/ /* * bte_copy(src, dest, len, mode, notification) * * Use the block transfer engine to move kernel memory from src to dest * using the assigned mode. * * Paramaters: * src - physical address of the transfer source. * dest - physical address of the transfer destination. * len - number of bytes to transfer from source to dest. * mode - hardware defined. See reference information * for IBCT0/1 in the SHUB Programmers Reference * notification - kernel virtual address of the notification cache * line. If NULL, the default is used and * the bte_copy is synchronous. * * NOTE: This function requires src, dest, and len to * be cacheline aligned. */ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification) { u64 transfer_size; u64 transfer_stat; struct bteinfo_s *bte; bte_result_t bte_status; unsigned long irq_flags; unsigned long itc_end = 0; struct bteinfo_s *btes_to_try[MAX_INTERFACES_TO_TRY]; int bte_if_index; int bte_pri, bte_sec; BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n", src, dest, len, mode, notification)); if (len == 0) { return BTE_SUCCESS; } BUG_ON((len & L1_CACHE_MASK) || (src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK)); BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT))); /* CPU 0 (per node) tries bte0 first, CPU 1 try bte1 first */ if (cpuid_to_subnode(smp_processor_id()) == 0) { bte_pri = 0; bte_sec = 1; } else { bte_pri = 1; bte_sec = 0; } if (mode & BTE_USE_DEST) { /* try remote then local */ btes_to_try[0] = bte_if_on_node(NASID_GET(dest), bte_pri); btes_to_try[1] = bte_if_on_node(NASID_GET(dest), bte_sec); if (mode & BTE_USE_ANY) { btes_to_try[2] = bte_if_on_node(get_nasid(), bte_pri); btes_to_try[3] = bte_if_on_node(get_nasid(), bte_sec); } else { btes_to_try[2] = NULL; btes_to_try[3] = NULL; } } else { /* try local then remote */ btes_to_try[0] = bte_if_on_node(get_nasid(), bte_pri); btes_to_try[1] = bte_if_on_node(get_nasid(), bte_sec); if (mode & BTE_USE_ANY) { btes_to_try[2] = bte_if_on_node(NASID_GET(dest), bte_pri); btes_to_try[3] = bte_if_on_node(NASID_GET(dest), bte_sec); } else { btes_to_try[2] = NULL; btes_to_try[3] = NULL; } } retry_bteop: do { local_irq_save(irq_flags); bte_if_index = 0; /* Attempt to lock one of the BTE interfaces. */ while (bte_if_index < MAX_INTERFACES_TO_TRY) { bte = btes_to_try[bte_if_index++]; if (bte == NULL) { continue; } if (spin_trylock(&bte->spinlock)) { if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) || (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) { /* Got the lock but BTE still busy */ spin_unlock(&bte->spinlock); } else { /* we got the lock and it's not busy */ break; } } bte = NULL; } if (bte != NULL) { break; } local_irq_restore(irq_flags); if (!(mode & BTE_WACQUIRE)) { return BTEFAIL_NOTAVAIL; } } while (1); if (notification == NULL) { /* User does not want to be notified. */ bte->most_rcnt_na = &bte->notify; } else { bte->most_rcnt_na = notification; } /* Calculate the number of cache lines to transfer. */ transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK); /* Initialize the notification to a known value. */ *bte->most_rcnt_na = BTE_WORD_BUSY; /* Set the status reg busy bit and transfer length */ BTE_PRINTKV(("IBLS = 0x%lx\n", IBLS_BUSY | transfer_size)); BTE_LNSTAT_STORE(bte, IBLS_BUSY | transfer_size); /* Set the source and destination registers */ BTE_PRINTKV(("IBSA = 0x%lx)\n", (TO_PHYS(src)))); BTE_SRC_STORE(bte, TO_PHYS(src)); BTE_PRINTKV(("IBDA = 0x%lx)\n", (TO_PHYS(dest)))); BTE_DEST_STORE(bte, TO_PHYS(dest)); /* Set the notification register */ BTE_PRINTKV(("IBNA = 0x%lx)\n", TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na)))); BTE_NOTIF_STORE(bte, TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na))); /* Initiate the transfer */ BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode))); BTE_CTRL_STORE(bte, BTE_VALID_MODE(mode)); itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec); spin_unlock_irqrestore(&bte->spinlock, irq_flags); if (notification != NULL) { return BTE_SUCCESS; } while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) { if (ia64_get_itc() > itc_end) { BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n", NASID_GET(bte->bte_base_addr), bte->bte_num, BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) ); bte->bte_error_count++; bte->bh_error = IBLS_ERROR; bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode)); *bte->most_rcnt_na = BTE_WORD_AVAILABLE; goto retry_bteop; } } BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n", BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na)); if (transfer_stat & IBLS_ERROR) { bte_status = transfer_stat & ~IBLS_ERROR; } else { bte_status = BTE_SUCCESS; } *bte->most_rcnt_na = BTE_WORD_AVAILABLE; BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n", BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na)); return bte_status; } EXPORT_SYMBOL(bte_copy); /* * bte_unaligned_copy(src, dest, len, mode) * * use the block transfer engine to move kernel * memory from src to dest using the assigned mode. * * Paramaters: * src - physical address of the transfer source. * dest - physical address of the transfer destination. * len - number of bytes to transfer from source to dest. * mode - hardware defined. See reference information * for IBCT0/1 in the SGI documentation. * * NOTE: If the source, dest, and len are all cache line aligned, * then it would be _FAR_ preferrable to use bte_copy instead. */ bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode) { int destFirstCacheOffset; u64 headBteSource; u64 headBteLen; u64 headBcopySrcOffset; u64 headBcopyDest; u64 headBcopyLen; u64 footBteSource; u64 footBteLen; u64 footBcopyDest; u64 footBcopyLen; bte_result_t rv; char *bteBlock, *bteBlock_unaligned; if (len == 0) { return BTE_SUCCESS; } /* temporary buffer used during unaligned transfers */ bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL | GFP_DMA); if (bteBlock_unaligned == NULL) { return BTEFAIL_NOTAVAIL; } bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned); headBcopySrcOffset = src & L1_CACHE_MASK; destFirstCacheOffset = dest & L1_CACHE_MASK; /* * At this point, the transfer is broken into * (up to) three sections. The first section is * from the start address to the first physical * cache line, the second is from the first physical * cache line to the last complete cache line, * and the third is from the last cache line to the * end of the buffer. The first and third sections * are handled by bte copying into a temporary buffer * and then bcopy'ing the necessary section into the * final location. The middle section is handled with * a standard bte copy. * * One nasty exception to the above rule is when the * source and destination are not symetrically * mis-aligned. If the source offset from the first * cache line is different from the destination offset, * we make the first section be the entire transfer * and the bcopy the entire block into place. */ if (headBcopySrcOffset == destFirstCacheOffset) { /* * Both the source and destination are the same * distance from a cache line boundary so we can * use the bte to transfer the bulk of the * data. */ headBteSource = src & ~L1_CACHE_MASK; headBcopyDest = dest; if (headBcopySrcOffset) { headBcopyLen = (len > (L1_CACHE_BYTES - headBcopySrcOffset) ? L1_CACHE_BYTES - headBcopySrcOffset : len); headBteLen = L1_CACHE_BYTES; } else { headBcopyLen = 0; headBteLen = 0; } if (len > headBcopyLen) { footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK; footBteLen = L1_CACHE_BYTES; footBteSource = src + len - footBcopyLen; footBcopyDest = dest + len - footBcopyLen; if (footBcopyDest == (headBcopyDest + headBcopyLen)) { /* * We have two contigous bcopy * blocks. Merge them. */ headBcopyLen += footBcopyLen; headBteLen += footBteLen; } else if (footBcopyLen > 0) { rv = bte_copy(footBteSource, ia64_tpa((unsigned long)bteBlock), footBteLen, mode, NULL); if (rv != BTE_SUCCESS) { kfree(bteBlock_unaligned); return rv; } memcpy(__va(footBcopyDest), (char *)bteBlock, footBcopyLen); } } else { footBcopyLen = 0; footBteLen = 0; } if (len > (headBcopyLen + footBcopyLen)) { /* now transfer the middle. */ rv = bte_copy((src + headBcopyLen), (dest + headBcopyLen), (len - headBcopyLen - footBcopyLen), mode, NULL); if (rv != BTE_SUCCESS) { kfree(bteBlock_unaligned); return rv; } } } else { /* * The transfer is not symetric, we will * allocate a buffer large enough for all the * data, bte_copy into that buffer and then * bcopy to the destination. */ /* Add the leader from source */ headBteLen = len + (src & L1_CACHE_MASK); /* Add the trailing bytes from footer. */ headBteLen += L1_CACHE_BYTES - (headBteLen & L1_CACHE_MASK); headBteSource = src & ~L1_CACHE_MASK; headBcopySrcOffset = src & L1_CACHE_MASK; headBcopyDest = dest; headBcopyLen = len; } if (headBcopyLen > 0) { rv = bte_copy(headBteSource, ia64_tpa((unsigned long)bteBlock), headBteLen, mode, NULL); if (rv != BTE_SUCCESS) { kfree(bteBlock_unaligned); return rv; } memcpy(__va(headBcopyDest), ((char *)bteBlock + headBcopySrcOffset), headBcopyLen); } kfree(bteBlock_unaligned); return BTE_SUCCESS; } EXPORT_SYMBOL(bte_unaligned_copy); /************************************************************************ * Block Transfer Engine initialization functions. * ***********************************************************************/ /* * bte_init_node(nodepda, cnode) * * Initialize the nodepda structure with BTE base addresses and * spinlocks. */ void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode) { int i; /* * Indicate that all the block transfer engines on this node * are available. */ /* * Allocate one bte_recover_t structure per node. It holds * the recovery lock for node. All the bte interface structures * will point at this one bte_recover structure to get the lock. */ spin_lock_init(&mynodepda->bte_recovery_lock); init_timer(&mynodepda->bte_recovery_timer); mynodepda->bte_recovery_timer.function = bte_error_handler; mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda; for (i = 0; i < BTES_PER_NODE; i++) { /* Which link status register should we use? */ unsigned long link_status = (i == 0 ? IIO_IBLS0 : IIO_IBLS1); mynodepda->bte_if[i].bte_base_addr = (u64 *) REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), link_status); /* * Initialize the notification and spinlock * so the first transfer can occur. */ mynodepda->bte_if[i].most_rcnt_na = &(mynodepda->bte_if[i].notify); mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE; spin_lock_init(&mynodepda->bte_if[i].spinlock); mynodepda->bte_if[i].bte_cnode = cnode; mynodepda->bte_if[i].bte_error_count = 0; mynodepda->bte_if[i].bte_num = i; mynodepda->bte_if[i].cleanup_active = 0; mynodepda->bte_if[i].bh_error = 0; } }