aboutsummaryrefslogtreecommitdiff
path: root/drivers/gpu/arm/t6xx/kbase/src/common/mali_kbase_pm_driver.c
blob: 1362b98ac6ede16fc0dfba830f379acc9cf9e157 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/*
 *
 * (C) COPYRIGHT 2010-2013 ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU licence.
 *
 * A copy of the licence is included with the program, and can also be obtained
 * from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA  02110-1301, USA.
 *
 */



/**
 * @file mali_kbase_pm_driver.c
 * Base kernel Power Management hardware control
 */

#include <kbase/src/common/mali_kbase.h>
#include <kbase/src/common/mali_midg_regmap.h>
#include <kbase/src/common/mali_kbase_gator.h>
#include <kbase/src/common/mali_kbase_pm.h>

#if MALI_MOCK_TEST
#define MOCKABLE(function) function##_original
#else
#define MOCKABLE(function) function
#endif				/* MALI_MOCK_TEST */

/** Actions that can be performed on a core.
 *
 * This enumeration is private to the file. Its values are set to allow @ref core_type_to_reg function,
 * which decodes this enumeration, to be simpler and more efficient.
 */
typedef enum kbasep_pm_action {
	ACTION_PRESENT = 0,
	ACTION_READY = (SHADER_READY_LO - SHADER_PRESENT_LO),
	ACTION_PWRON = (SHADER_PWRON_LO - SHADER_PRESENT_LO),
	ACTION_PWROFF = (SHADER_PWROFF_LO - SHADER_PRESENT_LO),
	ACTION_PWRTRANS = (SHADER_PWRTRANS_LO - SHADER_PRESENT_LO),
	ACTION_PWRACTIVE = (SHADER_PWRACTIVE_LO - SHADER_PRESENT_LO)
} kbasep_pm_action;

/** Decode a core type and action to a register.
 *
 * Given a core type (defined by @ref kbase_pm_core_type) and an action (defined by @ref kbasep_pm_action) this
 * function will return the register offset that will perform the action on the core type. The register returned is
 * the \c _LO register and an offset must be applied to use the \c _HI register.
 *
 * @param core_type The type of core
 * @param action    The type of action
 *
 * @return The register offset of the \c _LO register that performs an action of type \c action on a core of type \c
 * core_type.
 */
static u32 core_type_to_reg(kbase_pm_core_type core_type, kbasep_pm_action action)
{
	return core_type + action;
}

/** Invokes an action on a core set
 *
 * This function performs the action given by \c action on a set of cores of a type given by \c core_type. It is a
 * static function used by @ref kbase_pm_transition_core_type
 *
 * @param kbdev     The kbase device structure of the device
 * @param core_type The type of core that the action should be performed on
 * @param cores     A bit mask of cores to perform the action on (low 32 bits)
 * @param action    The action to perform on the cores
 */
STATIC void kbase_pm_invoke(kbase_device *kbdev, kbase_pm_core_type core_type, u64 cores, kbasep_pm_action action)
{
	u32 reg;
	u32 lo = cores & 0xFFFFFFFF;
	u32 hi = (cores >> 32) & 0xFFFFFFFF;

	lockdep_assert_held(&kbdev->pm.power_change_lock);

	reg = core_type_to_reg(core_type, action);

	KBASE_DEBUG_ASSERT(reg);
#ifdef CONFIG_MALI_GATOR_SUPPORT
	if (cores) {
		if (action == ACTION_PWRON)
			kbase_trace_mali_pm_power_on(core_type, cores);
		else if (action == ACTION_PWROFF)
			kbase_trace_mali_pm_power_off(core_type, cores);
	}
#endif				/* CONFIG_MALI_GATOR_SUPPORT */
	/* Tracing */
	if (cores) {
		if (action == ACTION_PWRON)
			switch (core_type) {
				case KBASE_PM_CORE_SHADER:
					KBASE_TRACE_ADD(kbdev, PM_PWRON, NULL, NULL, 0u, lo);
					break;
				case KBASE_PM_CORE_TILER:
					KBASE_TRACE_ADD(kbdev, PM_PWRON_TILER, NULL, NULL, 0u, lo);
					break;
				case KBASE_PM_CORE_L2:
					KBASE_TRACE_ADD(kbdev, PM_PWRON_L2, NULL, NULL, 0u, lo);
					break;
				default:
					/* L3 not handled */
					break;
			}
		else if (action == ACTION_PWROFF)
			switch (core_type) {
				case KBASE_PM_CORE_SHADER:
					KBASE_TRACE_ADD(kbdev, PM_PWROFF, NULL, NULL, 0u, lo);
					break;
				case KBASE_PM_CORE_TILER:
					KBASE_TRACE_ADD(kbdev, PM_PWROFF_TILER, NULL, NULL, 0u, lo);
					break;
				case KBASE_PM_CORE_L2:
					KBASE_TRACE_ADD(kbdev, PM_PWROFF_L2, NULL, NULL, 0u, lo);
					break;
				default:
					/* L3 not handled */
					break;
			}
	}

	if (lo != 0)
		kbase_reg_write(kbdev, GPU_CONTROL_REG(reg), lo, NULL);

	if (hi != 0)
		kbase_reg_write(kbdev, GPU_CONTROL_REG(reg + 4), hi, NULL);
}

/** Get information about a core set
 *
 * This function gets information (chosen by \c action) about a set of cores of a type given by \c core_type. It is a
 * static function used by @ref kbase_pm_get_present_cores, @ref kbase_pm_get_active_cores, @ref
 * kbase_pm_get_trans_cores and @ref kbase_pm_get_ready_cores.
 *
 * @param kbdev     The kbase device structure of the device
 * @param core_type The type of core that the should be queried
 * @param action    The property of the cores to query
 *
 * @return A bit mask specifying the state of the cores
 */
static u64 kbase_pm_get_state(kbase_device *kbdev, kbase_pm_core_type core_type, kbasep_pm_action action)
{
	u32 reg;
	u32 lo, hi;

	reg = core_type_to_reg(core_type, action);

	KBASE_DEBUG_ASSERT(reg);

	lo = kbase_reg_read(kbdev, GPU_CONTROL_REG(reg), NULL);
	hi = kbase_reg_read(kbdev, GPU_CONTROL_REG(reg + 4), NULL);

	return (((u64) hi) << 32) | ((u64) lo);
}

void kbasep_pm_read_present_cores(kbase_device *kbdev)
{
	kbdev->shader_present_bitmap = kbase_pm_get_state(kbdev, KBASE_PM_CORE_SHADER, ACTION_PRESENT);
	kbdev->tiler_present_bitmap = kbase_pm_get_state(kbdev, KBASE_PM_CORE_TILER, ACTION_PRESENT);
	kbdev->l2_present_bitmap = kbase_pm_get_state(kbdev, KBASE_PM_CORE_L2, ACTION_PRESENT);
	kbdev->l3_present_bitmap = kbase_pm_get_state(kbdev, KBASE_PM_CORE_L3, ACTION_PRESENT);

	kbdev->shader_inuse_bitmap = 0;
	kbdev->shader_needed_bitmap = 0;
	kbdev->shader_available_bitmap = 0;
	kbdev->tiler_available_bitmap = 0;
	kbdev->l2_users_count = 0;
	kbdev->l2_available_bitmap = 0;
	kbdev->tiler_needed_cnt = 0;
	kbdev->tiler_inuse_cnt = 0;

	memset(kbdev->shader_needed_cnt, 0, sizeof(kbdev->shader_needed_cnt));
}

KBASE_EXPORT_TEST_API(kbasep_pm_read_present_cores)

/** Get the cores that are present
 */
u64 kbase_pm_get_present_cores(kbase_device *kbdev, kbase_pm_core_type type)
{
	KBASE_DEBUG_ASSERT(kbdev != NULL);

	switch (type) {
	case KBASE_PM_CORE_L3:
		return kbdev->l3_present_bitmap;
		break;
	case KBASE_PM_CORE_L2:
		return kbdev->l2_present_bitmap;
		break;
	case KBASE_PM_CORE_SHADER:
		return kbdev->shader_present_bitmap;
		break;
	case KBASE_PM_CORE_TILER:
		return kbdev->tiler_present_bitmap;
		break;
	}
	KBASE_DEBUG_ASSERT(0);
	return 0;
}

KBASE_EXPORT_TEST_API(kbase_pm_get_present_cores)

/** Get the cores that are "active" (busy processing work)
 */
u64 kbase_pm_get_active_cores(kbase_device *kbdev, kbase_pm_core_type type)
{
	return kbase_pm_get_state(kbdev, type, ACTION_PWRACTIVE);
}

KBASE_EXPORT_TEST_API(kbase_pm_get_active_cores)

/** Get the cores that are transitioning between power states
 */
u64 kbase_pm_get_trans_cores(kbase_device *kbdev, kbase_pm_core_type type)
{
	return kbase_pm_get_state(kbdev, type, ACTION_PWRTRANS);
}

KBASE_EXPORT_TEST_API(kbase_pm_get_trans_cores)
/** Get the cores that are powered on
 */
u64 kbase_pm_get_ready_cores(kbase_device *kbdev, kbase_pm_core_type type)
{
	u64 result;
	result = kbase_pm_get_state(kbdev, type, ACTION_READY);

	switch (type) {
		case KBASE_PM_CORE_SHADER:
			KBASE_TRACE_ADD(kbdev, PM_CORES_POWERED, NULL, NULL, 0u, (u32) result);
			break;
		case KBASE_PM_CORE_TILER:
			KBASE_TRACE_ADD(kbdev, PM_CORES_POWERED_TILER, NULL, NULL, 0u, (u32) result);
			break;
		case KBASE_PM_CORE_L2:
			KBASE_TRACE_ADD(kbdev, PM_CORES_POWERED_L2, NULL, NULL, 0u, (u32) result);
			break;
		default:
			/* NB: L3 not currently traced */
			break;
	}

	return result;
}

KBASE_EXPORT_TEST_API(kbase_pm_get_ready_cores)

/** Perform power transitions for a particular core type.
 *
 * This function will perform any available power transitions to make the actual hardware state closer to the desired
 * state. If a core is currently transitioning then changes to the power state of that call cannot be made until the
 * transition has finished. Cores which are not present in the hardware are ignored if they are specified in the
 * desired_state bitmask, however the return value will always be 0 in this case.
 *
 * @param kbdev             The kbase device
 * @param type              The core type to perform transitions for
 * @param desired_state     A bit mask of the desired state of the cores
 * @param in_use            A bit mask of the cores that are currently running jobs.
 *                          These cores have to be kept powered up because there are jobs
 *                          running (or about to run) on them.
 * @param[out] available    Receives a bit mask of the cores that the job scheduler can use to submit jobs to.
 *                          May be NULL if this is not needed.
 * @param[in,out] powering_on Bit mask to update with cores that are transitioning to a power-on state.
 *
 * @return MALI_TRUE if the desired state has been reached, MALI_FALSE otherwise
 */
STATIC mali_bool kbase_pm_transition_core_type(kbase_device *kbdev, kbase_pm_core_type type, u64 desired_state,
					       u64 in_use, u64 * const available, u64 *powering_on)
{
	u64 present;
	u64 ready;
	u64 trans;
	u64 powerup;
	u64 powerdown;
	u64 powering_on_trans;
	u64 desired_state_in_use;

	lockdep_assert_held(&kbdev->pm.power_change_lock);

	/* Get current state */
	present = kbase_pm_get_present_cores(kbdev, type);
	trans = kbase_pm_get_trans_cores(kbdev, type);
	ready = kbase_pm_get_ready_cores(kbdev, type);

	powering_on_trans = trans & *powering_on;
	*powering_on = powering_on_trans;

	if (available != NULL)
		*available = (ready | powering_on_trans) & desired_state;

	/* Update desired state to include the in-use cores. These have to be kept powered up because there are jobs
	 * running or about to run on these cores
	 */
	desired_state_in_use = desired_state | in_use;

	/* Update state of whether l2 caches are powered */
	if (type == KBASE_PM_CORE_L2) {
		if ((ready == present) && (desired_state_in_use == ready) && (trans == 0)) {
			/* All are ready, none will be turned off, and none are transitioning */
			kbdev->pm.l2_powered = 1;
			if (kbdev->l2_users_count > 0) {
				/* Notify any registered l2 cache users (optimized out when no users waiting) */
				wake_up(&kbdev->pm.l2_powered_wait);
			}
		} else {
			kbdev->pm.l2_powered = 0;
		}
	}

	if (desired_state_in_use == ready && (trans == 0))
		return MALI_TRUE;

	/* Restrict the cores to those that are actually present */
	powerup = desired_state_in_use & present;
	powerdown = (~desired_state_in_use) & present;

	/* Restrict to cores that are not already in the desired state */
	powerup &= ~ready;
	powerdown &= ready;

	/* Don't transition any cores that are already transitioning */
	powerup &= ~trans;
	powerdown &= ~trans;

	/* Perform transitions if any */
	kbase_pm_invoke(kbdev, type, powerup, ACTION_PWRON);
	kbase_pm_invoke(kbdev, type, powerdown, ACTION_PWROFF);

	/* Recalculate cores transitioning on, and re-evaluate our state */
	powering_on_trans |= powerup;
	*powering_on = powering_on_trans;
	if (available != NULL)
		*available = (ready | powering_on_trans) & desired_state;

	return MALI_FALSE;
}

KBASE_EXPORT_TEST_API(kbase_pm_transition_core_type)

/** Determine which caches should be on for a particular core state.
 *
 * This function takes a bit mask of the present caches and the cores (or caches) that are attached to the caches that
 * will be powered. It then computes which caches should be turned on to allow the cores requested to be powered up.
 *
 * @param present       The bit mask of present caches
 * @param cores_powered A bit mask of cores (or L2 caches) that are desired to be powered
 *
 * @return A bit mask of the caches that should be turned on
 */
STATIC u64 get_desired_cache_status(u64 present, u64 cores_powered)
{
	u64 desired = 0;

	while (present) {
		/* Find out which is the highest set bit */
		u64 bit = fls64(present) - 1;
		u64 bit_mask = 1ull << bit;
		/* Create a mask which has all bits from 'bit' upwards set */

		u64 mask = ~(bit_mask - 1);

		/* If there are any cores powered at this bit or above (that haven't previously been processed) then we need
		 * this core on */
		if (cores_powered & mask)
			desired |= bit_mask;

		/* Remove bits from cores_powered and present */
		cores_powered &= ~mask;
		present &= ~bit_mask;
	}

	return desired;
}

KBASE_EXPORT_TEST_API(get_desired_cache_status)

mali_bool MOCKABLE(kbase_pm_check_transitions_nolock) (struct kbase_device *kbdev)
{
	mali_bool cores_are_available = MALI_FALSE;
	mali_bool in_desired_state = MALI_TRUE;
	u64 desired_l2_state;
	u64 desired_l3_state;
	u64 cores_powered;
	u64 tiler_available_bitmap;
	u64 shader_available_bitmap;
	u64 shader_ready_bitmap;
	u64 shader_transitioning_bitmap;
	u64 l2_available_bitmap;

	KBASE_DEBUG_ASSERT(NULL != kbdev);
	lockdep_assert_held(&kbdev->pm.power_change_lock);

	spin_lock(&kbdev->pm.gpu_powered_lock);
	if (kbdev->pm.gpu_powered == MALI_FALSE) {
		spin_unlock(&kbdev->pm.gpu_powered_lock);
		if (kbdev->pm.desired_shader_state == 0 && kbdev->pm.desired_tiler_state == 0)
			return MALI_TRUE;
		return MALI_FALSE;
	}

	/* Trace that a change-state is being requested, and that it took
	 * (effectively) no time to start it. This is useful for counting how many
	 * state changes occurred, in a way that's backwards-compatible with
	 * processing the trace data */
	kbase_timeline_pm_send_event(kbdev, KBASE_TIMELINE_PM_EVENT_CHANGE_GPU_STATE);
	kbase_timeline_pm_handle_event(kbdev, KBASE_TIMELINE_PM_EVENT_CHANGE_GPU_STATE);

	/* If any cores are already powered then, we must keep the caches on */
	cores_powered = kbase_pm_get_ready_cores(kbdev, KBASE_PM_CORE_SHADER);

	cores_powered |= kbdev->pm.desired_shader_state;

	/* If there are l2 cache users registered, keep all l2s powered even if all other cores are off. */
	if (kbdev->l2_users_count > 0)
		cores_powered |= kbdev->l2_present_bitmap;

	desired_l2_state = get_desired_cache_status(kbdev->l2_present_bitmap, cores_powered);

	/* If any l2 cache is on, then enable l2 #0, for use by job manager */
	if (0 != desired_l2_state) {
		desired_l2_state |= 1;
		/* Also enable tiler if l2 cache is powered */
		kbdev->pm.desired_tiler_state = kbdev->tiler_present_bitmap;
	} else {
		kbdev->pm.desired_tiler_state = 0;
	}

	desired_l3_state = get_desired_cache_status(kbdev->l3_present_bitmap, desired_l2_state);

	in_desired_state &= kbase_pm_transition_core_type(kbdev, KBASE_PM_CORE_L3, desired_l3_state, 0, NULL, &kbdev->pm.powering_on_l3_state);
	in_desired_state &= kbase_pm_transition_core_type(kbdev, KBASE_PM_CORE_L2, desired_l2_state, 0, &l2_available_bitmap, &kbdev->pm.powering_on_l2_state);

	if( kbdev->l2_available_bitmap != l2_available_bitmap)
	{
		KBASE_TIMELINE_POWER_L2(kbdev,l2_available_bitmap);
	}

	kbdev->l2_available_bitmap = l2_available_bitmap;

	if (in_desired_state) {

		in_desired_state &= kbase_pm_transition_core_type(kbdev, KBASE_PM_CORE_TILER, kbdev->pm.desired_tiler_state, 0, &tiler_available_bitmap, &kbdev->pm.powering_on_tiler_state);
		in_desired_state &= kbase_pm_transition_core_type(kbdev, KBASE_PM_CORE_SHADER, kbdev->pm.desired_shader_state, kbdev->shader_inuse_bitmap, &shader_available_bitmap, &kbdev->pm.powering_on_shader_state);

		if (kbdev->shader_available_bitmap != shader_available_bitmap) {
			KBASE_TRACE_ADD(kbdev, PM_CORES_CHANGE_AVAILABLE, NULL, NULL, 0u, (u32) shader_available_bitmap);
			KBASE_TIMELINE_POWER_SHADER(kbdev, shader_available_bitmap);
		}

		kbdev->shader_available_bitmap = shader_available_bitmap;

		if (kbdev->tiler_available_bitmap != tiler_available_bitmap) {
			KBASE_TRACE_ADD(kbdev, PM_CORES_CHANGE_AVAILABLE_TILER, NULL, NULL, 0u, (u32) tiler_available_bitmap);
			KBASE_TIMELINE_POWER_TILER(kbdev, tiler_available_bitmap);
		}

		kbdev->tiler_available_bitmap = tiler_available_bitmap;

	} else if ((l2_available_bitmap & kbdev->tiler_present_bitmap) != kbdev->tiler_present_bitmap) {
		tiler_available_bitmap = 0;

		if (kbdev->tiler_available_bitmap != tiler_available_bitmap) {
			KBASE_TIMELINE_POWER_TILER(kbdev, tiler_available_bitmap);
		}

		kbdev->tiler_available_bitmap = tiler_available_bitmap;
	}

	/* State updated for slow-path waiters */
	kbdev->pm.gpu_in_desired_state = in_desired_state;

	shader_ready_bitmap = kbase_pm_get_ready_cores(kbdev, KBASE_PM_CORE_SHADER);
	shader_transitioning_bitmap = kbase_pm_get_trans_cores(kbdev, KBASE_PM_CORE_SHADER);

	/* Determine whether the cores are now available (even if the set of
	 * available cores is empty). Note that they can be available even if we've
	 * not finished transitioning to the desired state */
	if ((kbdev->shader_available_bitmap & kbdev->pm.desired_shader_state) == kbdev->pm.desired_shader_state
		&& (kbdev->tiler_available_bitmap & kbdev->pm.desired_tiler_state) == kbdev->pm.desired_tiler_state) {
		cores_are_available = MALI_TRUE;

		KBASE_TRACE_ADD(kbdev, PM_CORES_AVAILABLE, NULL, NULL, 0u, (u32)(kbdev->shader_available_bitmap & kbdev->pm.desired_shader_state));
		KBASE_TRACE_ADD(kbdev, PM_CORES_AVAILABLE_TILER, NULL, NULL, 0u, (u32)(kbdev->tiler_available_bitmap & kbdev->pm.desired_tiler_state));

		/* Log timelining information about handling events that power up
		 * cores, to match up either with immediate submission either because
		 * cores already available, or from PM IRQ */
		if (!in_desired_state)
			kbase_timeline_pm_send_event(kbdev, KBASE_TIMELINE_PM_EVENT_GPU_STATE_CHANGED);
	}

	if (in_desired_state) {
		KBASE_DEBUG_ASSERT(cores_are_available);

#ifdef CONFIG_MALI_GATOR_SUPPORT
		kbase_trace_mali_pm_status(KBASE_PM_CORE_L3, kbase_pm_get_ready_cores(kbdev, KBASE_PM_CORE_L3));
		kbase_trace_mali_pm_status(KBASE_PM_CORE_L2, kbase_pm_get_ready_cores(kbdev, KBASE_PM_CORE_L2));
		kbase_trace_mali_pm_status(KBASE_PM_CORE_SHADER, kbase_pm_get_ready_cores(kbdev, KBASE_PM_CORE_SHADER));
		kbase_trace_mali_pm_status(KBASE_PM_CORE_TILER, kbase_pm_get_ready_cores(kbdev, KBASE_PM_CORE_TILER));
#endif				/* CONFIG_MALI_GATOR_SUPPORT */

		KBASE_TRACE_ADD(kbdev, PM_DESIRED_REACHED, NULL, NULL, kbdev->pm.gpu_in_desired_state, (u32)kbdev->pm.desired_shader_state);
		KBASE_TRACE_ADD(kbdev, PM_DESIRED_REACHED_TILER, NULL, NULL, 0u, (u32)kbdev->pm.desired_tiler_state);

		/* Log timelining information for synchronous waiters */
		kbase_timeline_pm_send_event(kbdev, KBASE_TIMELINE_PM_EVENT_GPU_STATE_CHANGED);
		/* Wake slow-path waiters. Job scheduler does not use this. */
		KBASE_TRACE_ADD(kbdev, PM_WAKE_WAITERS, NULL, NULL, 0u, 0);
		wake_up(&kbdev->pm.gpu_in_desired_state_wait);
	}
	
	spin_unlock(&kbdev->pm.gpu_powered_lock);

	/* kbase_pm_ca_update_core_status can cause one-level recursion into
	 * this function, so it must only be called once all changes to kbdev
	 * have been committed, and after the gpu_powered_lock has been
	 * dropped. */
	if (kbdev->shader_ready_bitmap != shader_ready_bitmap ||
	    kbdev->shader_transitioning_bitmap != shader_transitioning_bitmap) {
		kbdev->shader_ready_bitmap = shader_ready_bitmap;
		kbdev->shader_transitioning_bitmap = shader_transitioning_bitmap;

		kbase_pm_ca_update_core_status(kbdev, shader_ready_bitmap, shader_transitioning_bitmap);
	}

	/* The core availability policy is not allowed to keep core group 0 off */
	if (!((shader_ready_bitmap | shader_transitioning_bitmap) & kbdev->gpu_props.props.coherency_info.group[0].core_mask) &&
	    !(kbase_pm_ca_get_core_mask(kbdev) & kbdev->gpu_props.props.coherency_info.group[0].core_mask))
		BUG();

	/* The core availability policy is allowed to keep core group 1 off, 
	 * but all jobs specifically targeting CG1 must fail */
	if (!((shader_ready_bitmap | shader_transitioning_bitmap) & kbdev->gpu_props.props.coherency_info.group[1].core_mask) &&
	    !(kbase_pm_ca_get_core_mask(kbdev) & kbdev->gpu_props.props.coherency_info.group[1].core_mask))
		kbdev->pm.cg1_disabled = MALI_TRUE;
	else
		kbdev->pm.cg1_disabled = MALI_FALSE;

	return cores_are_available;
}
KBASE_EXPORT_TEST_API(kbase_pm_check_transitions_nolock)

void kbase_pm_check_transitions_sync(struct kbase_device *kbdev)
{
	unsigned long flags;
	mali_bool cores_are_available;
	/* Force the transition to be checked and reported - the cores may be
	 * 'available' (for job submission) but not fully powered up. */
	spin_lock_irqsave(&kbdev->pm.power_change_lock, flags);
	cores_are_available = kbase_pm_check_transitions_nolock(kbdev);
	/* Don't need 'cores_are_available', because we don't return anything */
	CSTD_UNUSED(cores_are_available);
	spin_unlock_irqrestore(&kbdev->pm.power_change_lock, flags);

	/* Wait for cores */
	wait_event(kbdev->pm.gpu_in_desired_state_wait, kbdev->pm.gpu_in_desired_state);

	/* Log timelining information that a change in state has completed */
	kbase_timeline_pm_handle_event(kbdev, KBASE_TIMELINE_PM_EVENT_GPU_STATE_CHANGED);
}
KBASE_EXPORT_TEST_API(kbase_pm_check_transitions_sync)

void kbase_pm_enable_interrupts(kbase_device *kbdev)
{
	unsigned long flags;

	KBASE_DEBUG_ASSERT(NULL != kbdev);
	/*
	 * Clear all interrupts,
	 * and unmask them all.
	 */
	spin_lock_irqsave(&kbdev->pm.power_change_lock, flags);
	kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_CLEAR), GPU_IRQ_REG_ALL, NULL);
	kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK), GPU_IRQ_REG_ALL, NULL);
	spin_unlock_irqrestore(&kbdev->pm.power_change_lock, flags);

	kbase_reg_write(kbdev, JOB_CONTROL_REG(JOB_IRQ_CLEAR), 0xFFFFFFFF, NULL);
	kbase_reg_write(kbdev, JOB_CONTROL_REG(JOB_IRQ_MASK), 0xFFFFFFFF, NULL);

	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_CLEAR), 0xFFFFFFFF, NULL);
	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_MASK), 0xFFFFFFFF, NULL);
}

KBASE_EXPORT_TEST_API(kbase_pm_enable_interrupts)

void kbase_pm_disable_interrupts(kbase_device *kbdev)
{
	unsigned long flags;

	KBASE_DEBUG_ASSERT(NULL != kbdev);
	/*
	 * Mask all interrupts,
	 * and clear them all.
	 */
	spin_lock_irqsave(&kbdev->pm.power_change_lock, flags);
	kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK), 0, NULL);
	kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_CLEAR), GPU_IRQ_REG_ALL, NULL);
	spin_unlock_irqrestore(&kbdev->pm.power_change_lock, flags);

	kbase_reg_write(kbdev, JOB_CONTROL_REG(JOB_IRQ_MASK), 0, NULL);
	kbase_reg_write(kbdev, JOB_CONTROL_REG(JOB_IRQ_CLEAR), 0xFFFFFFFF, NULL);

	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_MASK), 0, NULL);
	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_CLEAR), 0xFFFFFFFF, NULL);
}

KBASE_EXPORT_TEST_API(kbase_pm_disable_interrupts)

/*
 * pmu layout:
 * 0x0000: PMU TAG (RO) (0xCAFECAFE)
 * 0x0004: PMU VERSION ID (RO) (0x00000000)
 * 0x0008: CLOCK ENABLE (RW) (31:1 SBZ, 0 CLOCK STATE)
 */
void kbase_pm_clock_on(kbase_device *kbdev)
{
	unsigned long flags;
	KBASE_DEBUG_ASSERT(NULL != kbdev);
	lockdep_assert_held(&kbdev->pm.lock);

	if (kbdev->pm.gpu_powered) {
		/* Already turned on */
		return;
	}

	KBASE_TRACE_ADD(kbdev, PM_GPU_ON, NULL, NULL, 0u, 0u);

	if (kbdev->pm.callback_power_on && kbdev->pm.callback_power_on(kbdev)) {
		/* GPU state was lost, reset GPU to ensure it is in a consistent state */
		kbase_pm_init_hw(kbdev,MALI_TRUE);
	}

	spin_lock_irqsave(&kbdev->pm.gpu_powered_lock, flags);
	kbdev->pm.gpu_powered = MALI_TRUE;
	spin_unlock_irqrestore(&kbdev->pm.gpu_powered_lock, flags);

	/* Lastly, enable the interrupts */
	kbase_pm_enable_interrupts(kbdev);
}

KBASE_EXPORT_TEST_API(kbase_pm_clock_on)

void kbase_pm_clock_off(kbase_device *kbdev)
{
	unsigned long flags;
	KBASE_DEBUG_ASSERT(NULL != kbdev);
	lockdep_assert_held(&kbdev->pm.lock);

	/* ASSERT that the cores should now be unavailable. No lock needed. */
	KBASE_DEBUG_ASSERT(kbdev->shader_available_bitmap == 0u);

	if (!kbdev->pm.gpu_powered) {
		/* Already turned off */
		return;
	}

	KBASE_TRACE_ADD(kbdev, PM_GPU_OFF, NULL, NULL, 0u, 0u);

	/* Disable interrupts. This also clears any outstanding interrupts */
	kbase_pm_disable_interrupts(kbdev);
	/* Ensure that any IRQ handlers have finished */
	kbase_synchronize_irqs(kbdev);

	/* The GPU power may be turned off from this point */
	spin_lock_irqsave(&kbdev->pm.gpu_powered_lock, flags);
	kbdev->pm.gpu_powered = MALI_FALSE;
	spin_unlock_irqrestore(&kbdev->pm.gpu_powered_lock, flags);

	if (kbdev->pm.callback_power_off)
		kbdev->pm.callback_power_off(kbdev);
}

KBASE_EXPORT_TEST_API(kbase_pm_clock_off)

struct kbasep_reset_timeout_data {
	struct hrtimer timer;
	mali_bool timed_out;
	kbase_device *kbdev;
};

void kbase_pm_reset_done(kbase_device *kbdev)
{
	KBASE_DEBUG_ASSERT(kbdev != NULL);
	kbdev->pm.reset_done = MALI_TRUE;
	wake_up(&kbdev->pm.reset_done_wait);
}

/**
 * Wait for the RESET_COMPLETED IRQ to occur, then reset the waiting state.
 */
STATIC void kbase_pm_wait_for_reset(kbase_device *kbdev)
{
	lockdep_assert_held(&kbdev->pm.lock);

	wait_event(kbdev->pm.reset_done_wait, (kbdev->pm.reset_done));
	kbdev->pm.reset_done = MALI_FALSE;
}

KBASE_EXPORT_TEST_API(kbase_pm_reset_done)

static enum hrtimer_restart kbasep_reset_timeout(struct hrtimer *timer)
{
	struct kbasep_reset_timeout_data *rtdata = container_of(timer, struct kbasep_reset_timeout_data, timer);

	rtdata->timed_out = 1;

	/* Set the wait queue to wake up kbase_pm_init_hw even though the reset hasn't completed */
	kbase_pm_reset_done(rtdata->kbdev);

	return HRTIMER_NORESTART;
}

static void kbase_pm_hw_issues(kbase_device *kbdev)
{
	u32 value = 0;
	u32 config_value;

	/* Needed due to MIDBASE-1494: LS_PAUSEBUFFER_DISABLE. See PRLAM-8443. */
	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8443))
		value |= (1 << 16);

	/* Needed due to MIDBASE-2054: SDC_DISABLE_OQ_DISCARD. See PRLAM-10327. */
	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_10327))
		value |= (1 << 6);

	/* Enable alternative hardware counter selection if configured. */
	if( kbasep_get_config_value(kbdev, kbdev->config_attributes, KBASE_CONFIG_ATTR_ALTERNATIVE_HWC) )
		value |= (1 << 3);

	if (value != 0)
		kbase_reg_write(kbdev, GPU_CONTROL_REG(SHADER_CONFIG), value, NULL);

	/* Limit the GPU bus bandwidth if the platform needs this. */
	value = kbase_reg_read(kbdev, GPU_CONTROL_REG(L2_MMU_CONFIG), NULL);

	/* Limit read ID width for AXI */
	config_value = (u32) kbasep_get_config_value(kbdev, kbdev->config_attributes, KBASE_CONFIG_ATTR_ARID_LIMIT);
	value &= ~(L2_MMU_CONFIG_LIMIT_EXTERNAL_READS);
	value |= (config_value & 0x3) << L2_MMU_CONFIG_LIMIT_EXTERNAL_READS_SHIFT;

	/* Limit write ID width for AXI */
	config_value = (u32) kbasep_get_config_value(kbdev, kbdev->config_attributes, KBASE_CONFIG_ATTR_AWID_LIMIT);
	value &= ~(L2_MMU_CONFIG_LIMIT_EXTERNAL_WRITES);
	value |= (config_value & 0x3) << L2_MMU_CONFIG_LIMIT_EXTERNAL_WRITES_SHIFT;

	kbase_reg_write(kbdev, GPU_CONTROL_REG(L2_MMU_CONFIG), value, NULL);
}

mali_error kbase_pm_init_hw(kbase_device *kbdev, mali_bool enable_irqs )
{
	unsigned long flags;
	struct kbasep_reset_timeout_data rtdata;

	KBASE_DEBUG_ASSERT(NULL != kbdev);
	lockdep_assert_held(&kbdev->pm.lock);

	/* Ensure the clock is on before attempting to access the hardware */
	if (!kbdev->pm.gpu_powered) {
		if (kbdev->pm.callback_power_on)
			kbdev->pm.callback_power_on(kbdev);

		spin_lock_irqsave(&kbdev->pm.gpu_powered_lock, flags);
		kbdev->pm.gpu_powered = MALI_TRUE;
		spin_unlock_irqrestore(&kbdev->pm.gpu_powered_lock, flags);
	}

	/* Ensure interrupts are off to begin with, this also clears any outstanding interrupts */
	kbase_pm_disable_interrupts(kbdev);

	/* Prepare for the soft-reset */
	kbdev->pm.reset_done = MALI_FALSE;

	/* The cores should be made unavailable due to the reset */
	spin_lock_irqsave(&kbdev->pm.power_change_lock, flags);
	if (kbdev->shader_available_bitmap != 0u)
			KBASE_TRACE_ADD(kbdev, PM_CORES_CHANGE_AVAILABLE, NULL, NULL, 0u, (u32)0u);
	if (kbdev->tiler_available_bitmap != 0u)
			KBASE_TRACE_ADD(kbdev, PM_CORES_CHANGE_AVAILABLE_TILER, NULL, NULL, 0u, (u32)0u);
	kbdev->shader_available_bitmap = 0u;
	kbdev->tiler_available_bitmap = 0u;
	kbdev->l2_available_bitmap = 0u;
	spin_unlock_irqrestore(&kbdev->pm.power_change_lock, flags);

	/* Soft reset the GPU */
	KBASE_TRACE_ADD(kbdev, CORE_GPU_SOFT_RESET, NULL, NULL, 0u, 0);
	kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_COMMAND), GPU_COMMAND_SOFT_RESET, NULL);

	/* Unmask the reset complete interrupt only */
	kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK), RESET_COMPLETED, NULL);

	/* Initialize a structure for tracking the status of the reset */
	rtdata.kbdev = kbdev;
	rtdata.timed_out = 0;

	/* Create a timer to use as a timeout on the reset */
	hrtimer_init_on_stack(&rtdata.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rtdata.timer.function = kbasep_reset_timeout;

	hrtimer_start(&rtdata.timer, HR_TIMER_DELAY_MSEC(RESET_TIMEOUT), HRTIMER_MODE_REL);

	/* Wait for the RESET_COMPLETED interrupt to be raised */
	kbase_pm_wait_for_reset(kbdev);

	if (rtdata.timed_out == 0) {
		/* GPU has been reset */
		hrtimer_cancel(&rtdata.timer);
		destroy_hrtimer_on_stack(&rtdata.timer);
		goto out;
	}

	/* No interrupt has been received - check if the RAWSTAT register says the reset has completed */
	if (kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_IRQ_RAWSTAT), NULL) & RESET_COMPLETED) {
		/* The interrupt is set in the RAWSTAT; this suggests that the interrupts are not getting to the CPU */
		KBASE_DEBUG_PRINT_WARN(KBASE_PM, "Reset interrupt didn't reach CPU. Check interrupt assignments.\n");
		/* If interrupts aren't working we can't continue. */
		destroy_hrtimer_on_stack(&rtdata.timer);
		goto out;
	}

	/* The GPU doesn't seem to be responding to the reset so try a hard reset */
	KBASE_DEBUG_PRINT_ERROR(KBASE_PM, "Failed to soft-reset GPU (timed out after %d ms), now attempting a hard reset\n", RESET_TIMEOUT);
	KBASE_TRACE_ADD(kbdev, CORE_GPU_HARD_RESET, NULL, NULL, 0u, 0);
	kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_COMMAND), GPU_COMMAND_HARD_RESET, NULL);

	/* Restart the timer to wait for the hard reset to complete */
	rtdata.timed_out = 0;

	hrtimer_start(&rtdata.timer, HR_TIMER_DELAY_MSEC(RESET_TIMEOUT), HRTIMER_MODE_REL);

	/* Wait for the RESET_COMPLETED interrupt to be raised */
	kbase_pm_wait_for_reset(kbdev);

	if (rtdata.timed_out == 0) {
		/* GPU has been reset */
		hrtimer_cancel(&rtdata.timer);
		destroy_hrtimer_on_stack(&rtdata.timer);
		goto out;
	}

	destroy_hrtimer_on_stack(&rtdata.timer);

	KBASE_DEBUG_PRINT_ERROR(KBASE_PM, "Failed to hard-reset the GPU (timed out after %d ms)\n", RESET_TIMEOUT);

	/* The GPU still hasn't reset, give up */
	return MALI_ERROR_FUNCTION_FAILED;

 out:
	/* Re-enable interrupts if requested*/
	if ( enable_irqs )
	{
		kbase_pm_enable_interrupts(kbdev);
	}
	/* If cycle counter was in use-re enable it */
	spin_lock_irqsave(&kbdev->pm.gpu_cycle_counter_requests_lock, flags);

	if (kbdev->pm.gpu_cycle_counter_requests)
		kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_COMMAND), GPU_COMMAND_CYCLE_COUNT_START, NULL);

	spin_unlock_irqrestore(&kbdev->pm.gpu_cycle_counter_requests_lock, flags);

	kbase_pm_hw_issues(kbdev);

	return MALI_ERROR_NONE;
}

KBASE_EXPORT_TEST_API(kbase_pm_init_hw)

void kbase_pm_request_gpu_cycle_counter(kbase_device *kbdev)
{
	unsigned long flags;
	KBASE_DEBUG_ASSERT(kbdev != NULL);

	KBASE_DEBUG_ASSERT(kbdev->pm.gpu_powered);

	spin_lock_irqsave(&kbdev->pm.gpu_cycle_counter_requests_lock, flags);

	KBASE_DEBUG_ASSERT(kbdev->pm.gpu_cycle_counter_requests < INT_MAX);

	++kbdev->pm.gpu_cycle_counter_requests;

	if (1 == kbdev->pm.gpu_cycle_counter_requests)
		kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_COMMAND), GPU_COMMAND_CYCLE_COUNT_START, NULL);

	spin_unlock_irqrestore(&kbdev->pm.gpu_cycle_counter_requests_lock, flags);
}

KBASE_EXPORT_TEST_API(kbase_pm_request_gpu_cycle_counter)

void kbase_pm_release_gpu_cycle_counter(kbase_device *kbdev)
{
	unsigned long flags;
	KBASE_DEBUG_ASSERT(kbdev != NULL);

	spin_lock_irqsave(&kbdev->pm.gpu_cycle_counter_requests_lock, flags);

	KBASE_DEBUG_ASSERT(kbdev->pm.gpu_cycle_counter_requests > 0);

	--kbdev->pm.gpu_cycle_counter_requests;

	if (0 == kbdev->pm.gpu_cycle_counter_requests)
		kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_COMMAND), GPU_COMMAND_CYCLE_COUNT_STOP, NULL);

	spin_unlock_irqrestore(&kbdev->pm.gpu_cycle_counter_requests_lock, flags);
}

KBASE_EXPORT_TEST_API(kbase_pm_release_gpu_cycle_counter)