#ifndef __LINUX_SEQLOCK_H #define __LINUX_SEQLOCK_H /* * Reader/writer consistent mechanism without starving writers. This type of * lock for data where the reader wants a consistent set of information * and is willing to retry if the information changes. Readers never * block but they may have to retry if a writer is in * progress. Writers do not wait for readers. * * This is not as cache friendly as brlock. Also, this will not work * for data that contains pointers, because any writer could * invalidate a pointer that a reader was following. * * Expected reader usage: * do { * seq = read_seqbegin(&foo); * ... * } while (read_seqretry(&foo, seq)); * * * On non-SMP the spin locks disappear but the writer still needs * to increment the sequence variables because an interrupt routine could * change the state of the data. * * Based on x86_64 vsyscall gettimeofday * by Keith Owens and Andrea Arcangeli */ #include #include #include /* * Version using sequence counter only. * This can be used when code has its own mutex protecting the * updating starting before the write_seqcountbeqin() and ending * after the write_seqcount_end(). */ typedef struct seqcount { unsigned sequence; } seqcount_t; #define SEQCNT_ZERO { 0 } #define seqcount_init(x) do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0) /** * __read_seqcount_begin - begin a seq-read critical section (without barrier) * @s: pointer to seqcount_t * Returns: count to be passed to read_seqcount_retry * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. */ static inline unsigned __read_seqcount_begin(const seqcount_t *s) { unsigned ret; repeat: ret = ACCESS_ONCE(s->sequence); if (unlikely(ret & 1)) { cpu_relax(); goto repeat; } return ret; } /** * read_seqcount_begin - begin a seq-read critical section * @s: pointer to seqcount_t * Returns: count to be passed to read_seqcount_retry * * read_seqcount_begin opens a read critical section of the given seqcount. * Validity of the critical section is tested by checking read_seqcount_retry * function. */ static inline unsigned read_seqcount_begin(const seqcount_t *s) { unsigned ret = __read_seqcount_begin(s); smp_rmb(); return ret; } /** * raw_seqcount_begin - begin a seq-read critical section * @s: pointer to seqcount_t * Returns: count to be passed to read_seqcount_retry * * raw_seqcount_begin opens a read critical section of the given seqcount. * Validity of the critical section is tested by checking read_seqcount_retry * function. * * Unlike read_seqcount_begin(), this function will not wait for the count * to stabilize. If a writer is active when we begin, we will fail the * read_seqcount_retry() instead of stabilizing at the beginning of the * critical section. */ static inline unsigned raw_seqcount_begin(const seqcount_t *s) { unsigned ret = ACCESS_ONCE(s->sequence); smp_rmb(); return ret & ~1; } /** * __read_seqcount_retry - end a seq-read critical section (without barrier) * @s: pointer to seqcount_t * @start: count, from read_seqcount_begin * Returns: 1 if retry is required, else 0 * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. */ static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start) { return unlikely(s->sequence != start); } /** * read_seqcount_retry - end a seq-read critical section * @s: pointer to seqcount_t * @start: count, from read_seqcount_begin * Returns: 1 if retry is required, else 0 * * read_seqcount_retry closes a read critical section of the given seqcount. * If the critical section was invalid, it must be ignored (and typically * retried). */ static inline int read_seqcount_retry(const seqcount_t *s, unsigned start) { smp_rmb(); return __read_seqcount_retry(s, start); } /* * Sequence counter only version assumes that callers are using their * own mutexing. */ static inline void write_seqcount_begin(seqcount_t *s) { s->sequence++; smp_wmb(); } static inline void write_seqcount_end(seqcount_t *s) { smp_wmb(); s->sequence++; } /** * write_seqcount_barrier - invalidate in-progress read-side seq operations * @s: pointer to seqcount_t * * After write_seqcount_barrier, no read-side seq operations will complete * successfully and see data older than this. */ static inline void write_seqcount_barrier(seqcount_t *s) { smp_wmb(); s->sequence+=2; } typedef struct { struct seqcount seqcount; spinlock_t lock; } seqlock_t; /* * These macros triggered gcc-3.x compile-time problems. We think these are * OK now. Be cautious. */ #define __SEQLOCK_UNLOCKED(lockname) \ { \ .seqcount = SEQCNT_ZERO, \ .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } #define seqlock_init(x) \ do { \ seqcount_init(&(x)->seqcount); \ spin_lock_init(&(x)->lock); \ } while (0) #define DEFINE_SEQLOCK(x) \ seqlock_t x = __SEQLOCK_UNLOCKED(x) /* * Read side functions for starting and finalizing a read side section. */ static inline unsigned read_seqbegin(const seqlock_t *sl) { return read_seqcount_begin(&sl->seqcount); } static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { return read_seqcount_retry(&sl->seqcount, start); } /* * Lock out other writers and update the count. * Acts like a normal spin_lock/unlock. * Don't need preempt_disable() because that is in the spin_lock already. */ static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); write_seqcount_begin(&sl->seqcount); } static inline void write_sequnlock(seqlock_t *sl) { write_seqcount_end(&sl->seqcount); spin_unlock(&sl->lock); } static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); write_seqcount_begin(&sl->seqcount); } static inline void write_sequnlock_bh(seqlock_t *sl) { write_seqcount_end(&sl->seqcount); spin_unlock_bh(&sl->lock); } static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); write_seqcount_begin(&sl->seqcount); } static inline void write_sequnlock_irq(seqlock_t *sl) { write_seqcount_end(&sl->seqcount); spin_unlock_irq(&sl->lock); } static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); write_seqcount_begin(&sl->seqcount); return flags; } #define write_seqlock_irqsave(lock, flags) \ do { flags = __write_seqlock_irqsave(lock); } while (0) static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { write_seqcount_end(&sl->seqcount); spin_unlock_irqrestore(&sl->lock, flags); } #endif /* __LINUX_SEQLOCK_H */