/* * Main bcache entry point - handle a read or a write request and decide what to * do with it; the make_request functions are called by the block layer. * * Copyright 2010, 2011 Kent Overstreet * Copyright 2012 Google, Inc. */ #include "bcache.h" #include "btree.h" #include "debug.h" #include "request.h" #include #include #include #include #include "blk-cgroup.h" #include #define CUTOFF_CACHE_ADD 95 #define CUTOFF_CACHE_READA 90 #define CUTOFF_WRITEBACK 50 #define CUTOFF_WRITEBACK_SYNC 75 struct kmem_cache *bch_search_cache; static void check_should_skip(struct cached_dev *, struct search *); /* Cgroup interface */ #ifdef CONFIG_CGROUP_BCACHE static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 }; static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup) { struct cgroup_subsys_state *css; return cgroup && (css = cgroup_subsys_state(cgroup, bcache_subsys_id)) ? container_of(css, struct bch_cgroup, css) : &bcache_default_cgroup; } struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio) { struct cgroup_subsys_state *css = bio->bi_css ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id) : task_subsys_state(current, bcache_subsys_id); return css ? container_of(css, struct bch_cgroup, css) : &bcache_default_cgroup; } static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft, struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { char tmp[1024]; int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes, cgroup_to_bcache(cgrp)->cache_mode + 1); if (len < 0) return len; return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); } static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft, const char *buf) { int v = bch_read_string_list(buf, bch_cache_modes); if (v < 0) return v; cgroup_to_bcache(cgrp)->cache_mode = v - 1; return 0; } static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft) { return cgroup_to_bcache(cgrp)->verify; } static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val) { cgroup_to_bcache(cgrp)->verify = val; return 0; } static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft) { struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); return atomic_read(&bcachecg->stats.cache_hits); } static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft) { struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); return atomic_read(&bcachecg->stats.cache_misses); } static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp, struct cftype *cft) { struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); return atomic_read(&bcachecg->stats.cache_bypass_hits); } static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp, struct cftype *cft) { struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); return atomic_read(&bcachecg->stats.cache_bypass_misses); } static struct cftype bch_files[] = { { .name = "cache_mode", .read = cache_mode_read, .write_string = cache_mode_write, }, { .name = "verify", .read_u64 = bch_verify_read, .write_u64 = bch_verify_write, }, { .name = "cache_hits", .read_u64 = bch_cache_hits_read, }, { .name = "cache_misses", .read_u64 = bch_cache_misses_read, }, { .name = "cache_bypass_hits", .read_u64 = bch_cache_bypass_hits_read, }, { .name = "cache_bypass_misses", .read_u64 = bch_cache_bypass_misses_read, }, { } /* terminate */ }; static void init_bch_cgroup(struct bch_cgroup *cg) { cg->cache_mode = -1; } static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup) { struct bch_cgroup *cg; cg = kzalloc(sizeof(*cg), GFP_KERNEL); if (!cg) return ERR_PTR(-ENOMEM); init_bch_cgroup(cg); return &cg->css; } static void bcachecg_destroy(struct cgroup *cgroup) { struct bch_cgroup *cg = cgroup_to_bcache(cgroup); free_css_id(&bcache_subsys, &cg->css); kfree(cg); } struct cgroup_subsys bcache_subsys = { .create = bcachecg_create, .destroy = bcachecg_destroy, .subsys_id = bcache_subsys_id, .name = "bcache", .module = THIS_MODULE, }; EXPORT_SYMBOL_GPL(bcache_subsys); #endif static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) { #ifdef CONFIG_CGROUP_BCACHE int r = bch_bio_to_cgroup(bio)->cache_mode; if (r >= 0) return r; #endif return BDEV_CACHE_MODE(&dc->sb); } static bool verify(struct cached_dev *dc, struct bio *bio) { #ifdef CONFIG_CGROUP_BCACHE if (bch_bio_to_cgroup(bio)->verify) return true; #endif return dc->verify; } static void bio_csum(struct bio *bio, struct bkey *k) { struct bio_vec *bv; uint64_t csum = 0; int i; bio_for_each_segment(bv, bio, i) { void *d = kmap(bv->bv_page) + bv->bv_offset; csum = bch_crc64_update(csum, d, bv->bv_len); kunmap(bv->bv_page); } k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); } /* Insert data into cache */ static void bio_invalidate(struct closure *cl) { struct btree_op *op = container_of(cl, struct btree_op, cl); struct bio *bio = op->cache_bio; pr_debug("invalidating %i sectors from %llu", bio_sectors(bio), (uint64_t) bio->bi_sector); while (bio_sectors(bio)) { unsigned len = min(bio_sectors(bio), 1U << 14); if (bch_keylist_realloc(&op->keys, 0, op->c)) goto out; bio->bi_sector += len; bio->bi_size -= len << 9; bch_keylist_add(&op->keys, &KEY(op->inode, bio->bi_sector, len)); } op->insert_data_done = true; bio_put(bio); out: continue_at(cl, bch_journal, bcache_wq); } struct open_bucket { struct list_head list; struct task_struct *last; unsigned sectors_free; BKEY_PADDED(key); }; void bch_open_buckets_free(struct cache_set *c) { struct open_bucket *b; while (!list_empty(&c->data_buckets)) { b = list_first_entry(&c->data_buckets, struct open_bucket, list); list_del(&b->list); kfree(b); } } int bch_open_buckets_alloc(struct cache_set *c) { int i; spin_lock_init(&c->data_bucket_lock); for (i = 0; i < 6; i++) { struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); if (!b) return -ENOMEM; list_add(&b->list, &c->data_buckets); } return 0; } /* * We keep multiple buckets open for writes, and try to segregate different * write streams for better cache utilization: first we look for a bucket where * the last write to it was sequential with the current write, and failing that * we look for a bucket that was last used by the same task. * * The ideas is if you've got multiple tasks pulling data into the cache at the * same time, you'll get better cache utilization if you try to segregate their * data and preserve locality. * * For example, say you've starting Firefox at the same time you're copying a * bunch of files. Firefox will likely end up being fairly hot and stay in the * cache awhile, but the data you copied might not be; if you wrote all that * data to the same buckets it'd get invalidated at the same time. * * Both of those tasks will be doing fairly random IO so we can't rely on * detecting sequential IO to segregate their data, but going off of the task * should be a sane heuristic. */ static struct open_bucket *pick_data_bucket(struct cache_set *c, const struct bkey *search, struct task_struct *task, struct bkey *alloc) { struct open_bucket *ret, *ret_task = NULL; list_for_each_entry_reverse(ret, &c->data_buckets, list) if (!bkey_cmp(&ret->key, search)) goto found; else if (ret->last == task) ret_task = ret; ret = ret_task ?: list_first_entry(&c->data_buckets, struct open_bucket, list); found: if (!ret->sectors_free && KEY_PTRS(alloc)) { ret->sectors_free = c->sb.bucket_size; bkey_copy(&ret->key, alloc); bkey_init(alloc); } if (!ret->sectors_free) ret = NULL; return ret; } /* * Allocates some space in the cache to write to, and k to point to the newly * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the * end of the newly allocated space). * * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many * sectors were actually allocated. * * If s->writeback is true, will not fail. */ static bool bch_alloc_sectors(struct bkey *k, unsigned sectors, struct search *s) { struct cache_set *c = s->op.c; struct open_bucket *b; BKEY_PADDED(key) alloc; struct closure cl, *w = NULL; unsigned i; if (s->writeback) { closure_init_stack(&cl); w = &cl; } /* * We might have to allocate a new bucket, which we can't do with a * spinlock held. So if we have to allocate, we drop the lock, allocate * and then retry. KEY_PTRS() indicates whether alloc points to * allocated bucket(s). */ bkey_init(&alloc.key); spin_lock(&c->data_bucket_lock); while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) { unsigned watermark = s->op.write_prio ? WATERMARK_MOVINGGC : WATERMARK_NONE; spin_unlock(&c->data_bucket_lock); if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w)) return false; spin_lock(&c->data_bucket_lock); } /* * If we had to allocate, we might race and not need to allocate the * second time we call find_data_bucket(). If we allocated a bucket but * didn't use it, drop the refcount bch_bucket_alloc_set() took: */ if (KEY_PTRS(&alloc.key)) __bkey_put(c, &alloc.key); for (i = 0; i < KEY_PTRS(&b->key); i++) EBUG_ON(ptr_stale(c, &b->key, i)); /* Set up the pointer to the space we're allocating: */ for (i = 0; i < KEY_PTRS(&b->key); i++) k->ptr[i] = b->key.ptr[i]; sectors = min(sectors, b->sectors_free); SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); SET_KEY_SIZE(k, sectors); SET_KEY_PTRS(k, KEY_PTRS(&b->key)); /* * Move b to the end of the lru, and keep track of what this bucket was * last used for: */ list_move_tail(&b->list, &c->data_buckets); bkey_copy_key(&b->key, k); b->last = s->task; b->sectors_free -= sectors; for (i = 0; i < KEY_PTRS(&b->key); i++) { SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); atomic_long_add(sectors, &PTR_CACHE(c, &b->key, i)->sectors_written); } if (b->sectors_free < c->sb.block_size) b->sectors_free = 0; /* * k takes refcounts on the buckets it points to until it's inserted * into the btree, but if we're done with this bucket we just transfer * get_data_bucket()'s refcount. */ if (b->sectors_free) for (i = 0; i < KEY_PTRS(&b->key); i++) atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); spin_unlock(&c->data_bucket_lock); return true; } static void bch_insert_data_error(struct closure *cl) { struct btree_op *op = container_of(cl, struct btree_op, cl); /* * Our data write just errored, which means we've got a bunch of keys to * insert that point to data that wasn't succesfully written. * * We don't have to insert those keys but we still have to invalidate * that region of the cache - so, if we just strip off all the pointers * from the keys we'll accomplish just that. */ struct bkey *src = op->keys.bottom, *dst = op->keys.bottom; while (src != op->keys.top) { struct bkey *n = bkey_next(src); SET_KEY_PTRS(src, 0); bkey_copy(dst, src); dst = bkey_next(dst); src = n; } op->keys.top = dst; bch_journal(cl); } static void bch_insert_data_endio(struct bio *bio, int error) { struct closure *cl = bio->bi_private; struct btree_op *op = container_of(cl, struct btree_op, cl); struct search *s = container_of(op, struct search, op); if (error) { /* TODO: We could try to recover from this. */ if (s->writeback) s->error = error; else if (s->write) set_closure_fn(cl, bch_insert_data_error, bcache_wq); else set_closure_fn(cl, NULL, NULL); } bch_bbio_endio(op->c, bio, error, "writing data to cache"); } static void bch_insert_data_loop(struct closure *cl) { struct btree_op *op = container_of(cl, struct btree_op, cl); struct search *s = container_of(op, struct search, op); struct bio *bio = op->cache_bio, *n; if (op->skip) return bio_invalidate(cl); if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { set_gc_sectors(op->c); bch_queue_gc(op->c); } do { unsigned i; struct bkey *k; struct bio_set *split = s->d ? s->d->bio_split : op->c->bio_split; /* 1 for the device pointer and 1 for the chksum */ if (bch_keylist_realloc(&op->keys, 1 + (op->csum ? 1 : 0), op->c)) continue_at(cl, bch_journal, bcache_wq); k = op->keys.top; bkey_init(k); SET_KEY_INODE(k, op->inode); SET_KEY_OFFSET(k, bio->bi_sector); if (!bch_alloc_sectors(k, bio_sectors(bio), s)) goto err; n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split); if (!n) { __bkey_put(op->c, k); continue_at(cl, bch_insert_data_loop, bcache_wq); } n->bi_end_io = bch_insert_data_endio; n->bi_private = cl; if (s->writeback) { SET_KEY_DIRTY(k, true); for (i = 0; i < KEY_PTRS(k); i++) SET_GC_MARK(PTR_BUCKET(op->c, k, i), GC_MARK_DIRTY); } SET_KEY_CSUM(k, op->csum); if (KEY_CSUM(k)) bio_csum(n, k); pr_debug("%s", pkey(k)); bch_keylist_push(&op->keys); trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev); n->bi_rw |= REQ_WRITE; bch_submit_bbio(n, op->c, k, 0); } while (n != bio); op->insert_data_done = true; continue_at(cl, bch_journal, bcache_wq); err: /* bch_alloc_sectors() blocks if s->writeback = true */ BUG_ON(s->writeback); /* * But if it's not a writeback write we'd rather just bail out if * there aren't any buckets ready to write to - it might take awhile and * we might be starving btree writes for gc or something. */ if (s->write) { /* * Writethrough write: We can't complete the write until we've * updated the index. But we don't want to delay the write while * we wait for buckets to be freed up, so just invalidate the * rest of the write. */ op->skip = true; return bio_invalidate(cl); } else { /* * From a cache miss, we can just insert the keys for the data * we have written or bail out if we didn't do anything. */ op->insert_data_done = true; bio_put(bio); if (!bch_keylist_empty(&op->keys)) continue_at(cl, bch_journal, bcache_wq); else closure_return(cl); } } /** * bch_insert_data - stick some data in the cache * * This is the starting point for any data to end up in a cache device; it could * be from a normal write, or a writeback write, or a write to a flash only * volume - it's also used by the moving garbage collector to compact data in * mostly empty buckets. * * It first writes the data to the cache, creating a list of keys to be inserted * (if the data had to be fragmented there will be multiple keys); after the * data is written it calls bch_journal, and after the keys have been added to * the next journal write they're inserted into the btree. * * It inserts the data in op->cache_bio; bi_sector is used for the key offset, * and op->inode is used for the key inode. * * If op->skip is true, instead of inserting the data it invalidates the region * of the cache represented by op->cache_bio and op->inode. */ void bch_insert_data(struct closure *cl) { struct btree_op *op = container_of(cl, struct btree_op, cl); bch_keylist_init(&op->keys); bio_get(op->cache_bio); bch_insert_data_loop(cl); } void bch_btree_insert_async(struct closure *cl) { struct btree_op *op = container_of(cl, struct btree_op, cl); struct search *s = container_of(op, struct search, op); if (bch_btree_insert(op, op->c)) { s->error = -ENOMEM; op->insert_data_done = true; } if (op->insert_data_done) { bch_keylist_free(&op->keys); closure_return(cl); } else continue_at(cl, bch_insert_data_loop, bcache_wq); } /* Common code for the make_request functions */ static void request_endio(struct bio *bio, int error) { struct closure *cl = bio->bi_private; if (error) { struct search *s = container_of(cl, struct search, cl); s->error = error; /* Only cache read errors are recoverable */ s->recoverable = false; } bio_put(bio); closure_put(cl); } void bch_cache_read_endio(struct bio *bio, int error) { struct bbio *b = container_of(bio, struct bbio, bio); struct closure *cl = bio->bi_private; struct search *s = container_of(cl, struct search, cl); /* * If the bucket was reused while our bio was in flight, we might have * read the wrong data. Set s->error but not error so it doesn't get * counted against the cache device, but we'll still reread the data * from the backing device. */ if (error) s->error = error; else if (ptr_stale(s->op.c, &b->key, 0)) { atomic_long_inc(&s->op.c->cache_read_races); s->error = -EINTR; } bch_bbio_endio(s->op.c, bio, error, "reading from cache"); } static void bio_complete(struct search *s) { if (s->orig_bio) { int cpu, rw = bio_data_dir(s->orig_bio); unsigned long duration = jiffies - s->start_time; cpu = part_stat_lock(); part_round_stats(cpu, &s->d->disk->part0); part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration); part_stat_unlock(); trace_bcache_request_end(s, s->orig_bio); bio_endio(s->orig_bio, s->error); s->orig_bio = NULL; } } static void do_bio_hook(struct search *s) { struct bio *bio = &s->bio.bio; memcpy(bio, s->orig_bio, sizeof(struct bio)); bio->bi_end_io = request_endio; bio->bi_private = &s->cl; atomic_set(&bio->bi_cnt, 3); } static void search_free(struct closure *cl) { struct search *s = container_of(cl, struct search, cl); bio_complete(s); if (s->op.cache_bio) bio_put(s->op.cache_bio); if (s->unaligned_bvec) mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec); closure_debug_destroy(cl); mempool_free(s, s->d->c->search); } static struct search *search_alloc(struct bio *bio, struct bcache_device *d) { struct bio_vec *bv; struct search *s = mempool_alloc(d->c->search, GFP_NOIO); memset(s, 0, offsetof(struct search, op.keys)); __closure_init(&s->cl, NULL); s->op.inode = d->id; s->op.c = d->c; s->d = d; s->op.lock = -1; s->task = current; s->orig_bio = bio; s->write = (bio->bi_rw & REQ_WRITE) != 0; s->op.flush_journal = (bio->bi_rw & REQ_FLUSH) != 0; s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0; s->recoverable = 1; s->start_time = jiffies; do_bio_hook(s); if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) { bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO); memcpy(bv, bio_iovec(bio), sizeof(struct bio_vec) * bio_segments(bio)); s->bio.bio.bi_io_vec = bv; s->unaligned_bvec = 1; } return s; } static void btree_read_async(struct closure *cl) { struct btree_op *op = container_of(cl, struct btree_op, cl); int ret = btree_root(search_recurse, op->c, op); if (ret == -EAGAIN) continue_at(cl, btree_read_async, bcache_wq); closure_return(cl); } /* Cached devices */ static void cached_dev_bio_complete(struct closure *cl) { struct search *s = container_of(cl, struct search, cl); struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); search_free(cl); cached_dev_put(dc); } /* Process reads */ static void cached_dev_read_complete(struct closure *cl) { struct search *s = container_of(cl, struct search, cl); if (s->op.insert_collision) bch_mark_cache_miss_collision(s); if (s->op.cache_bio) { int i; struct bio_vec *bv; __bio_for_each_segment(bv, s->op.cache_bio, i, 0) __free_page(bv->bv_page); } cached_dev_bio_complete(cl); } static void request_read_error(struct closure *cl) { struct search *s = container_of(cl, struct search, cl); struct bio_vec *bv; int i; if (s->recoverable) { /* The cache read failed, but we can retry from the backing * device. */ pr_debug("recovering at sector %llu", (uint64_t) s->orig_bio->bi_sector); s->error = 0; bv = s->bio.bio.bi_io_vec; do_bio_hook(s); s->bio.bio.bi_io_vec = bv; if (!s->unaligned_bvec) bio_for_each_segment(bv, s->orig_bio, i) bv->bv_offset = 0, bv->bv_len = PAGE_SIZE; else memcpy(s->bio.bio.bi_io_vec, bio_iovec(s->orig_bio), sizeof(struct bio_vec) * bio_segments(s->orig_bio)); /* XXX: invalidate cache */ trace_bcache_read_retry(&s->bio.bio); closure_bio_submit(&s->bio.bio, &s->cl, s->d); } continue_at(cl, cached_dev_read_complete, NULL); } static void request_read_done(struct closure *cl) { struct search *s = container_of(cl, struct search, cl); struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); /* * s->cache_bio != NULL implies that we had a cache miss; cache_bio now * contains data ready to be inserted into the cache. * * First, we copy the data we just read from cache_bio's bounce buffers * to the buffers the original bio pointed to: */ if (s->op.cache_bio) { struct bio_vec *src, *dst; unsigned src_offset, dst_offset, bytes; void *dst_ptr; bio_reset(s->op.cache_bio); s->op.cache_bio->bi_sector = s->cache_miss->bi_sector; s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev; s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; bch_bio_map(s->op.cache_bio, NULL); src = bio_iovec(s->op.cache_bio); dst = bio_iovec(s->cache_miss); src_offset = src->bv_offset; dst_offset = dst->bv_offset; dst_ptr = kmap(dst->bv_page); while (1) { if (dst_offset == dst->bv_offset + dst->bv_len) { kunmap(dst->bv_page); dst++; if (dst == bio_iovec_idx(s->cache_miss, s->cache_miss->bi_vcnt)) break; dst_offset = dst->bv_offset; dst_ptr = kmap(dst->bv_page); } if (src_offset == src->bv_offset + src->bv_len) { src++; if (src == bio_iovec_idx(s->op.cache_bio, s->op.cache_bio->bi_vcnt)) BUG(); src_offset = src->bv_offset; } bytes = min(dst->bv_offset + dst->bv_len - dst_offset, src->bv_offset + src->bv_len - src_offset); memcpy(dst_ptr + dst_offset, page_address(src->bv_page) + src_offset, bytes); src_offset += bytes; dst_offset += bytes; } bio_put(s->cache_miss); s->cache_miss = NULL; } if (verify(dc, &s->bio.bio) && s->recoverable) bch_data_verify(s); bio_complete(s); if (s->op.cache_bio && !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) { s->op.type = BTREE_REPLACE; closure_call(&s->op.cl, bch_insert_data, NULL, cl); } continue_at(cl, cached_dev_read_complete, NULL); } static void request_read_done_bh(struct closure *cl) { struct search *s = container_of(cl, struct search, cl); struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip); if (s->error) continue_at_nobarrier(cl, request_read_error, bcache_wq); else if (s->op.cache_bio || verify(dc, &s->bio.bio)) continue_at_nobarrier(cl, request_read_done, bcache_wq); else continue_at_nobarrier(cl, cached_dev_read_complete, NULL); } static int cached_dev_cache_miss(struct btree *b, struct search *s, struct bio *bio, unsigned sectors) { int ret = 0; unsigned reada; struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); struct bio *miss; miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split); if (!miss) return -EAGAIN; if (miss == bio) s->op.lookup_done = true; miss->bi_end_io = request_endio; miss->bi_private = &s->cl; if (s->cache_miss || s->op.skip) goto out_submit; if (miss != bio || (bio->bi_rw & REQ_RAHEAD) || (bio->bi_rw & REQ_META) || s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA) reada = 0; else { reada = min(dc->readahead >> 9, sectors - bio_sectors(miss)); if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev)) reada = bdev_sectors(miss->bi_bdev) - bio_end(miss); } s->cache_bio_sectors = bio_sectors(miss) + reada; s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT, DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS), dc->disk.bio_split); if (!s->op.cache_bio) goto out_submit; s->op.cache_bio->bi_sector = miss->bi_sector; s->op.cache_bio->bi_bdev = miss->bi_bdev; s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; s->op.cache_bio->bi_end_io = request_endio; s->op.cache_bio->bi_private = &s->cl; /* btree_search_recurse()'s btree iterator is no good anymore */ ret = -EINTR; if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio)) goto out_put; bch_bio_map(s->op.cache_bio, NULL); if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO)) goto out_put; s->cache_miss = miss; bio_get(s->op.cache_bio); trace_bcache_cache_miss(s->orig_bio); closure_bio_submit(s->op.cache_bio, &s->cl, s->d); return ret; out_put: bio_put(s->op.cache_bio); s->op.cache_bio = NULL; out_submit: closure_bio_submit(miss, &s->cl, s->d); return ret; } static void request_read(struct cached_dev *dc, struct search *s) { struct closure *cl = &s->cl; check_should_skip(dc, s); closure_call(&s->op.cl, btree_read_async, NULL, cl); continue_at(cl, request_read_done_bh, NULL); } /* Process writes */ static void cached_dev_write_complete(struct closure *cl) { struct search *s = container_of(cl, struct search, cl); struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); up_read_non_owner(&dc->writeback_lock); cached_dev_bio_complete(cl); } static bool should_writeback(struct cached_dev *dc, struct bio *bio) { unsigned threshold = (bio->bi_rw & REQ_SYNC) ? CUTOFF_WRITEBACK_SYNC : CUTOFF_WRITEBACK; return !atomic_read(&dc->disk.detaching) && cache_mode(dc, bio) == CACHE_MODE_WRITEBACK && dc->disk.c->gc_stats.in_use < threshold; } static void request_write(struct cached_dev *dc, struct search *s) { struct closure *cl = &s->cl; struct bio *bio = &s->bio.bio; struct bkey start, end; start = KEY(dc->disk.id, bio->bi_sector, 0); end = KEY(dc->disk.id, bio_end(bio), 0); bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end); check_should_skip(dc, s); down_read_non_owner(&dc->writeback_lock); if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { s->op.skip = false; s->writeback = true; } if (bio->bi_rw & REQ_DISCARD) goto skip; if (s->op.skip) goto skip; if (should_writeback(dc, s->orig_bio)) s->writeback = true; if (!s->writeback) { s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO, dc->disk.bio_split); trace_bcache_writethrough(s->orig_bio); closure_bio_submit(bio, cl, s->d); } else { s->op.cache_bio = bio; trace_bcache_writeback(s->orig_bio); bch_writeback_add(dc, bio_sectors(bio)); } out: closure_call(&s->op.cl, bch_insert_data, NULL, cl); continue_at(cl, cached_dev_write_complete, NULL); skip: s->op.skip = true; s->op.cache_bio = s->orig_bio; bio_get(s->op.cache_bio); trace_bcache_write_skip(s->orig_bio); if ((bio->bi_rw & REQ_DISCARD) && !blk_queue_discard(bdev_get_queue(dc->bdev))) goto out; closure_bio_submit(bio, cl, s->d); goto out; } static void request_nodata(struct cached_dev *dc, struct search *s) { struct closure *cl = &s->cl; struct bio *bio = &s->bio.bio; if (bio->bi_rw & REQ_DISCARD) { request_write(dc, s); return; } if (s->op.flush_journal) bch_journal_meta(s->op.c, cl); closure_bio_submit(bio, cl, s->d); continue_at(cl, cached_dev_bio_complete, NULL); } /* Cached devices - read & write stuff */ int bch_get_congested(struct cache_set *c) { int i; if (!c->congested_read_threshold_us && !c->congested_write_threshold_us) return 0; i = (local_clock_us() - c->congested_last_us) / 1024; if (i < 0) return 0; i += atomic_read(&c->congested); if (i >= 0) return 0; i += CONGESTED_MAX; return i <= 0 ? 1 : fract_exp_two(i, 6); } static void add_sequential(struct task_struct *t) { ewma_add(t->sequential_io_avg, t->sequential_io, 8, 0); t->sequential_io = 0; } static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) { return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; } static void check_should_skip(struct cached_dev *dc, struct search *s) { struct cache_set *c = s->op.c; struct bio *bio = &s->bio.bio; long rand; int cutoff = bch_get_congested(c); unsigned mode = cache_mode(dc, bio); if (atomic_read(&dc->disk.detaching) || c->gc_stats.in_use > CUTOFF_CACHE_ADD || (bio->bi_rw & REQ_DISCARD)) goto skip; if (mode == CACHE_MODE_NONE || (mode == CACHE_MODE_WRITEAROUND && (bio->bi_rw & REQ_WRITE))) goto skip; if (bio->bi_sector & (c->sb.block_size - 1) || bio_sectors(bio) & (c->sb.block_size - 1)) { pr_debug("skipping unaligned io"); goto skip; } if (!cutoff) { cutoff = dc->sequential_cutoff >> 9; if (!cutoff) goto rescale; if (mode == CACHE_MODE_WRITEBACK && (bio->bi_rw & REQ_WRITE) && (bio->bi_rw & REQ_SYNC)) goto rescale; } if (dc->sequential_merge) { struct io *i; spin_lock(&dc->io_lock); hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash) if (i->last == bio->bi_sector && time_before(jiffies, i->jiffies)) goto found; i = list_first_entry(&dc->io_lru, struct io, lru); add_sequential(s->task); i->sequential = 0; found: if (i->sequential + bio->bi_size > i->sequential) i->sequential += bio->bi_size; i->last = bio_end(bio); i->jiffies = jiffies + msecs_to_jiffies(5000); s->task->sequential_io = i->sequential; hlist_del(&i->hash); hlist_add_head(&i->hash, iohash(dc, i->last)); list_move_tail(&i->lru, &dc->io_lru); spin_unlock(&dc->io_lock); } else { s->task->sequential_io = bio->bi_size; add_sequential(s->task); } rand = get_random_int(); cutoff -= bitmap_weight(&rand, BITS_PER_LONG); if (cutoff <= (int) (max(s->task->sequential_io, s->task->sequential_io_avg) >> 9)) goto skip; rescale: bch_rescale_priorities(c, bio_sectors(bio)); return; skip: bch_mark_sectors_bypassed(s, bio_sectors(bio)); s->op.skip = true; } static void cached_dev_make_request(struct request_queue *q, struct bio *bio) { struct search *s; struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; struct cached_dev *dc = container_of(d, struct cached_dev, disk); int cpu, rw = bio_data_dir(bio); cpu = part_stat_lock(); part_stat_inc(cpu, &d->disk->part0, ios[rw]); part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); part_stat_unlock(); bio->bi_bdev = dc->bdev; bio->bi_sector += dc->sb.data_offset; if (cached_dev_get(dc)) { s = search_alloc(bio, d); trace_bcache_request_start(s, bio); if (!bio_has_data(bio)) request_nodata(dc, s); else if (rw) request_write(dc, s); else request_read(dc, s); } else { if ((bio->bi_rw & REQ_DISCARD) && !blk_queue_discard(bdev_get_queue(dc->bdev))) bio_endio(bio, 0); else bch_generic_make_request(bio, &d->bio_split_hook); } } static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, unsigned int cmd, unsigned long arg) { struct cached_dev *dc = container_of(d, struct cached_dev, disk); return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); } static int cached_dev_congested(void *data, int bits) { struct bcache_device *d = data; struct cached_dev *dc = container_of(d, struct cached_dev, disk); struct request_queue *q = bdev_get_queue(dc->bdev); int ret = 0; if (bdi_congested(&q->backing_dev_info, bits)) return 1; if (cached_dev_get(dc)) { unsigned i; struct cache *ca; for_each_cache(ca, d->c, i) { q = bdev_get_queue(ca->bdev); ret |= bdi_congested(&q->backing_dev_info, bits); } cached_dev_put(dc); } return ret; } void bch_cached_dev_request_init(struct cached_dev *dc) { struct gendisk *g = dc->disk.disk; g->queue->make_request_fn = cached_dev_make_request; g->queue->backing_dev_info.congested_fn = cached_dev_congested; dc->disk.cache_miss = cached_dev_cache_miss; dc->disk.ioctl = cached_dev_ioctl; } /* Flash backed devices */ static int flash_dev_cache_miss(struct btree *b, struct search *s, struct bio *bio, unsigned sectors) { /* Zero fill bio */ while (bio->bi_idx != bio->bi_vcnt) { struct bio_vec *bv = bio_iovec(bio); unsigned j = min(bv->bv_len >> 9, sectors); void *p = kmap(bv->bv_page); memset(p + bv->bv_offset, 0, j << 9); kunmap(bv->bv_page); bv->bv_len -= j << 9; bv->bv_offset += j << 9; if (bv->bv_len) return 0; bio->bi_sector += j; bio->bi_size -= j << 9; bio->bi_idx++; sectors -= j; } s->op.lookup_done = true; return 0; } static void flash_dev_make_request(struct request_queue *q, struct bio *bio) { struct search *s; struct closure *cl; struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; int cpu, rw = bio_data_dir(bio); cpu = part_stat_lock(); part_stat_inc(cpu, &d->disk->part0, ios[rw]); part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); part_stat_unlock(); s = search_alloc(bio, d); cl = &s->cl; bio = &s->bio.bio; trace_bcache_request_start(s, bio); if (bio_has_data(bio) && !rw) { closure_call(&s->op.cl, btree_read_async, NULL, cl); } else if (bio_has_data(bio) || s->op.skip) { bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &KEY(d->id, bio->bi_sector, 0), &KEY(d->id, bio_end(bio), 0)); s->writeback = true; s->op.cache_bio = bio; closure_call(&s->op.cl, bch_insert_data, NULL, cl); } else { /* No data - probably a cache flush */ if (s->op.flush_journal) bch_journal_meta(s->op.c, cl); } continue_at(cl, search_free, NULL); } static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static int flash_dev_congested(void *data, int bits) { struct bcache_device *d = data; struct request_queue *q; struct cache *ca; unsigned i; int ret = 0; for_each_cache(ca, d->c, i) { q = bdev_get_queue(ca->bdev); ret |= bdi_congested(&q->backing_dev_info, bits); } return ret; } void bch_flash_dev_request_init(struct bcache_device *d) { struct gendisk *g = d->disk; g->queue->make_request_fn = flash_dev_make_request; g->queue->backing_dev_info.congested_fn = flash_dev_congested; d->cache_miss = flash_dev_cache_miss; d->ioctl = flash_dev_ioctl; } void bch_request_exit(void) { #ifdef CONFIG_CGROUP_BCACHE cgroup_unload_subsys(&bcache_subsys); #endif if (bch_search_cache) kmem_cache_destroy(bch_search_cache); } int __init bch_request_init(void) { bch_search_cache = KMEM_CACHE(search, 0); if (!bch_search_cache) return -ENOMEM; #ifdef CONFIG_CGROUP_BCACHE cgroup_load_subsys(&bcache_subsys); init_bch_cgroup(&bcache_default_cgroup); cgroup_add_cftypes(&bcache_subsys, bch_files); #endif return 0; }