/* * Copyright (C) 2012 Samsung Electronics Co.Ltd * Authors: * Eunchul Kim * Jinyoung Jeon * Sangmin Lee * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include #include #include #include #include #include #include #include #include "regs-gsc.h" #include "exynos_drm_ipp.h" #include "exynos_drm_gsc.h" /* * GSC stands for General SCaler and * supports image scaler/rotator and input/output DMA operations. * input DMA reads image data from the memory. * output DMA writes image data to memory. * GSC supports image rotation and image effect functions. * * M2M operation : supports crop/scale/rotation/csc so on. * Memory ----> GSC H/W ----> Memory. * Writeback operation : supports cloned screen with FIMD. * FIMD ----> GSC H/W ----> Memory. * Output operation : supports direct display using local path. * Memory ----> GSC H/W ----> FIMD, Mixer. */ /* * TODO * 1. check suspend/resume api if needed. * 2. need to check use case platform_device_id. * 3. check src/dst size with, height. * 4. added check_prepare api for right register. * 5. need to add supported list in prop_list. * 6. check prescaler/scaler optimization. */ #define GSC_MAX_DEVS 4 #define GSC_MAX_SRC 4 #define GSC_MAX_DST 16 #define GSC_RESET_TIMEOUT 50 #define GSC_BUF_STOP 1 #define GSC_BUF_START 2 #define GSC_REG_SZ 16 #define GSC_WIDTH_ITU_709 1280 #define GSC_SC_UP_MAX_RATIO 65536 #define GSC_SC_DOWN_RATIO_7_8 74898 #define GSC_SC_DOWN_RATIO_6_8 87381 #define GSC_SC_DOWN_RATIO_5_8 104857 #define GSC_SC_DOWN_RATIO_4_8 131072 #define GSC_SC_DOWN_RATIO_3_8 174762 #define GSC_SC_DOWN_RATIO_2_8 262144 #define GSC_REFRESH_MIN 12 #define GSC_REFRESH_MAX 60 #define GSC_CROP_MAX 8192 #define GSC_CROP_MIN 32 #define GSC_SCALE_MAX 4224 #define GSC_SCALE_MIN 32 #define GSC_COEF_RATIO 7 #define GSC_COEF_PHASE 9 #define GSC_COEF_ATTR 16 #define GSC_COEF_H_8T 8 #define GSC_COEF_V_4T 4 #define GSC_COEF_DEPTH 3 #define get_gsc_context(dev) platform_get_drvdata(to_platform_device(dev)) #define get_ctx_from_ippdrv(ippdrv) container_of(ippdrv,\ struct gsc_context, ippdrv); #define gsc_read(offset) readl(ctx->regs + (offset)) #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset)) /* * A structure of scaler. * * @range: narrow, wide. * @pre_shfactor: pre sclaer shift factor. * @pre_hratio: horizontal ratio of the prescaler. * @pre_vratio: vertical ratio of the prescaler. * @main_hratio: the main scaler's horizontal ratio. * @main_vratio: the main scaler's vertical ratio. */ struct gsc_scaler { bool range; u32 pre_shfactor; u32 pre_hratio; u32 pre_vratio; unsigned long main_hratio; unsigned long main_vratio; }; /* * A structure of scaler capability. * * find user manual 49.2 features. * @tile_w: tile mode or rotation width. * @tile_h: tile mode or rotation height. * @w: other cases width. * @h: other cases height. */ struct gsc_capability { /* tile or rotation */ u32 tile_w; u32 tile_h; /* other cases */ u32 w; u32 h; }; /* * A structure of gsc context. * * @ippdrv: prepare initialization using ippdrv. * @regs_res: register resources. * @regs: memory mapped io registers. * @lock: locking of operations. * @gsc_clk: gsc gate clock. * @sc: scaler infomations. * @id: gsc id. * @irq: irq number. * @rotation: supports rotation of src. * @suspended: qos operations. */ struct gsc_context { struct exynos_drm_ippdrv ippdrv; struct resource *regs_res; void __iomem *regs; struct mutex lock; struct clk *gsc_clk; struct gsc_scaler sc; int id; int irq; bool rotation; bool suspended; }; /* 8-tap Filter Coefficient */ static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = { { /* Ratio <= 65536 (~8:8) */ { 0, 0, 0, 128, 0, 0, 0, 0 }, { -1, 2, -6, 127, 7, -2, 1, 0 }, { -1, 4, -12, 125, 16, -5, 1, 0 }, { -1, 5, -15, 120, 25, -8, 2, 0 }, { -1, 6, -18, 114, 35, -10, 3, -1 }, { -1, 6, -20, 107, 46, -13, 4, -1 }, { -2, 7, -21, 99, 57, -16, 5, -1 }, { -1, 6, -20, 89, 68, -18, 5, -1 }, { -1, 6, -20, 79, 79, -20, 6, -1 }, { -1, 5, -18, 68, 89, -20, 6, -1 }, { -1, 5, -16, 57, 99, -21, 7, -2 }, { -1, 4, -13, 46, 107, -20, 6, -1 }, { -1, 3, -10, 35, 114, -18, 6, -1 }, { 0, 2, -8, 25, 120, -15, 5, -1 }, { 0, 1, -5, 16, 125, -12, 4, -1 }, { 0, 1, -2, 7, 127, -6, 2, -1 } }, { /* 65536 < Ratio <= 74898 (~8:7) */ { 3, -8, 14, 111, 13, -8, 3, 0 }, { 2, -6, 7, 112, 21, -10, 3, -1 }, { 2, -4, 1, 110, 28, -12, 4, -1 }, { 1, -2, -3, 106, 36, -13, 4, -1 }, { 1, -1, -7, 103, 44, -15, 4, -1 }, { 1, 1, -11, 97, 53, -16, 4, -1 }, { 0, 2, -13, 91, 61, -16, 4, -1 }, { 0, 3, -15, 85, 69, -17, 4, -1 }, { 0, 3, -16, 77, 77, -16, 3, 0 }, { -1, 4, -17, 69, 85, -15, 3, 0 }, { -1, 4, -16, 61, 91, -13, 2, 0 }, { -1, 4, -16, 53, 97, -11, 1, 1 }, { -1, 4, -15, 44, 103, -7, -1, 1 }, { -1, 4, -13, 36, 106, -3, -2, 1 }, { -1, 4, -12, 28, 110, 1, -4, 2 }, { -1, 3, -10, 21, 112, 7, -6, 2 } }, { /* 74898 < Ratio <= 87381 (~8:6) */ { 2, -11, 25, 96, 25, -11, 2, 0 }, { 2, -10, 19, 96, 31, -12, 2, 0 }, { 2, -9, 14, 94, 37, -12, 2, 0 }, { 2, -8, 10, 92, 43, -12, 1, 0 }, { 2, -7, 5, 90, 49, -12, 1, 0 }, { 2, -5, 1, 86, 55, -12, 0, 1 }, { 2, -4, -2, 82, 61, -11, -1, 1 }, { 1, -3, -5, 77, 67, -9, -1, 1 }, { 1, -2, -7, 72, 72, -7, -2, 1 }, { 1, -1, -9, 67, 77, -5, -3, 1 }, { 1, -1, -11, 61, 82, -2, -4, 2 }, { 1, 0, -12, 55, 86, 1, -5, 2 }, { 0, 1, -12, 49, 90, 5, -7, 2 }, { 0, 1, -12, 43, 92, 10, -8, 2 }, { 0, 2, -12, 37, 94, 14, -9, 2 }, { 0, 2, -12, 31, 96, 19, -10, 2 } }, { /* 87381 < Ratio <= 104857 (~8:5) */ { -1, -8, 33, 80, 33, -8, -1, 0 }, { -1, -8, 28, 80, 37, -7, -2, 1 }, { 0, -8, 24, 79, 41, -7, -2, 1 }, { 0, -8, 20, 78, 46, -6, -3, 1 }, { 0, -8, 16, 76, 50, -4, -3, 1 }, { 0, -7, 13, 74, 54, -3, -4, 1 }, { 1, -7, 10, 71, 58, -1, -5, 1 }, { 1, -6, 6, 68, 62, 1, -5, 1 }, { 1, -6, 4, 65, 65, 4, -6, 1 }, { 1, -5, 1, 62, 68, 6, -6, 1 }, { 1, -5, -1, 58, 71, 10, -7, 1 }, { 1, -4, -3, 54, 74, 13, -7, 0 }, { 1, -3, -4, 50, 76, 16, -8, 0 }, { 1, -3, -6, 46, 78, 20, -8, 0 }, { 1, -2, -7, 41, 79, 24, -8, 0 }, { 1, -2, -7, 37, 80, 28, -8, -1 } }, { /* 104857 < Ratio <= 131072 (~8:4) */ { -3, 0, 35, 64, 35, 0, -3, 0 }, { -3, -1, 32, 64, 38, 1, -3, 0 }, { -2, -2, 29, 63, 41, 2, -3, 0 }, { -2, -3, 27, 63, 43, 4, -4, 0 }, { -2, -3, 24, 61, 46, 6, -4, 0 }, { -2, -3, 21, 60, 49, 7, -4, 0 }, { -1, -4, 19, 59, 51, 9, -4, -1 }, { -1, -4, 16, 57, 53, 12, -4, -1 }, { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 12, 53, 57, 16, -4, -1 }, { -1, -4, 9, 51, 59, 19, -4, -1 }, { 0, -4, 7, 49, 60, 21, -3, -2 }, { 0, -4, 6, 46, 61, 24, -3, -2 }, { 0, -4, 4, 43, 63, 27, -3, -2 }, { 0, -3, 2, 41, 63, 29, -2, -2 }, { 0, -3, 1, 38, 64, 32, -1, -3 } }, { /* 131072 < Ratio <= 174762 (~8:3) */ { -1, 8, 33, 48, 33, 8, -1, 0 }, { -1, 7, 31, 49, 35, 9, -1, -1 }, { -1, 6, 30, 49, 36, 10, -1, -1 }, { -1, 5, 28, 48, 38, 12, -1, -1 }, { -1, 4, 26, 48, 39, 13, 0, -1 }, { -1, 3, 24, 47, 41, 15, 0, -1 }, { -1, 2, 23, 47, 42, 16, 0, -1 }, { -1, 2, 21, 45, 43, 18, 1, -1 }, { -1, 1, 19, 45, 45, 19, 1, -1 }, { -1, 1, 18, 43, 45, 21, 2, -1 }, { -1, 0, 16, 42, 47, 23, 2, -1 }, { -1, 0, 15, 41, 47, 24, 3, -1 }, { -1, 0, 13, 39, 48, 26, 4, -1 }, { -1, -1, 12, 38, 48, 28, 5, -1 }, { -1, -1, 10, 36, 49, 30, 6, -1 }, { -1, -1, 9, 35, 49, 31, 7, -1 } }, { /* 174762 < Ratio <= 262144 (~8:2) */ { 2, 13, 30, 38, 30, 13, 2, 0 }, { 2, 12, 29, 38, 30, 14, 3, 0 }, { 2, 11, 28, 38, 31, 15, 3, 0 }, { 2, 10, 26, 38, 32, 16, 4, 0 }, { 1, 10, 26, 37, 33, 17, 4, 0 }, { 1, 9, 24, 37, 34, 18, 5, 0 }, { 1, 8, 24, 37, 34, 19, 5, 0 }, { 1, 7, 22, 36, 35, 20, 6, 1 }, { 1, 6, 21, 36, 36, 21, 6, 1 }, { 1, 6, 20, 35, 36, 22, 7, 1 }, { 0, 5, 19, 34, 37, 24, 8, 1 }, { 0, 5, 18, 34, 37, 24, 9, 1 }, { 0, 4, 17, 33, 37, 26, 10, 1 }, { 0, 4, 16, 32, 38, 26, 10, 2 }, { 0, 3, 15, 31, 38, 28, 11, 2 }, { 0, 3, 14, 30, 38, 29, 12, 2 } } }; /* 4-tap Filter Coefficient */ static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = { { /* Ratio <= 65536 (~8:8) */ { 0, 128, 0, 0 }, { -4, 127, 5, 0 }, { -6, 124, 11, -1 }, { -8, 118, 19, -1 }, { -8, 111, 27, -2 }, { -8, 102, 37, -3 }, { -8, 92, 48, -4 }, { -7, 81, 59, -5 }, { -6, 70, 70, -6 }, { -5, 59, 81, -7 }, { -4, 48, 92, -8 }, { -3, 37, 102, -8 }, { -2, 27, 111, -8 }, { -1, 19, 118, -8 }, { -1, 11, 124, -6 }, { 0, 5, 127, -4 } }, { /* 65536 < Ratio <= 74898 (~8:7) */ { 8, 112, 8, 0 }, { 4, 111, 14, -1 }, { 1, 109, 20, -2 }, { -2, 105, 27, -2 }, { -3, 100, 34, -3 }, { -5, 93, 43, -3 }, { -5, 86, 51, -4 }, { -5, 77, 60, -4 }, { -5, 69, 69, -5 }, { -4, 60, 77, -5 }, { -4, 51, 86, -5 }, { -3, 43, 93, -5 }, { -3, 34, 100, -3 }, { -2, 27, 105, -2 }, { -2, 20, 109, 1 }, { -1, 14, 111, 4 } }, { /* 74898 < Ratio <= 87381 (~8:6) */ { 16, 96, 16, 0 }, { 12, 97, 21, -2 }, { 8, 96, 26, -2 }, { 5, 93, 32, -2 }, { 2, 89, 39, -2 }, { 0, 84, 46, -2 }, { -1, 79, 53, -3 }, { -2, 73, 59, -2 }, { -2, 66, 66, -2 }, { -2, 59, 73, -2 }, { -3, 53, 79, -1 }, { -2, 46, 84, 0 }, { -2, 39, 89, 2 }, { -2, 32, 93, 5 }, { -2, 26, 96, 8 }, { -2, 21, 97, 12 } }, { /* 87381 < Ratio <= 104857 (~8:5) */ { 22, 84, 22, 0 }, { 18, 85, 26, -1 }, { 14, 84, 31, -1 }, { 11, 82, 36, -1 }, { 8, 79, 42, -1 }, { 6, 76, 47, -1 }, { 4, 72, 52, 0 }, { 2, 68, 58, 0 }, { 1, 63, 63, 1 }, { 0, 58, 68, 2 }, { 0, 52, 72, 4 }, { -1, 47, 76, 6 }, { -1, 42, 79, 8 }, { -1, 36, 82, 11 }, { -1, 31, 84, 14 }, { -1, 26, 85, 18 } }, { /* 104857 < Ratio <= 131072 (~8:4) */ { 26, 76, 26, 0 }, { 22, 76, 30, 0 }, { 19, 75, 34, 0 }, { 16, 73, 38, 1 }, { 13, 71, 43, 1 }, { 10, 69, 47, 2 }, { 8, 66, 51, 3 }, { 6, 63, 55, 4 }, { 5, 59, 59, 5 }, { 4, 55, 63, 6 }, { 3, 51, 66, 8 }, { 2, 47, 69, 10 }, { 1, 43, 71, 13 }, { 1, 38, 73, 16 }, { 0, 34, 75, 19 }, { 0, 30, 76, 22 } }, { /* 131072 < Ratio <= 174762 (~8:3) */ { 29, 70, 29, 0 }, { 26, 68, 32, 2 }, { 23, 67, 36, 2 }, { 20, 66, 39, 3 }, { 17, 65, 43, 3 }, { 15, 63, 46, 4 }, { 12, 61, 50, 5 }, { 10, 58, 53, 7 }, { 8, 56, 56, 8 }, { 7, 53, 58, 10 }, { 5, 50, 61, 12 }, { 4, 46, 63, 15 }, { 3, 43, 65, 17 }, { 3, 39, 66, 20 }, { 2, 36, 67, 23 }, { 2, 32, 68, 26 } }, { /* 174762 < Ratio <= 262144 (~8:2) */ { 32, 64, 32, 0 }, { 28, 63, 34, 3 }, { 25, 62, 37, 4 }, { 22, 62, 40, 4 }, { 19, 61, 43, 5 }, { 17, 59, 46, 6 }, { 15, 58, 48, 7 }, { 13, 55, 51, 9 }, { 11, 53, 53, 11 }, { 9, 51, 55, 13 }, { 7, 48, 58, 15 }, { 6, 46, 59, 17 }, { 5, 43, 61, 19 }, { 4, 40, 62, 22 }, { 4, 37, 62, 25 }, { 3, 34, 63, 28 } } }; static int gsc_sw_reset(struct gsc_context *ctx) { u32 cfg; int count = GSC_RESET_TIMEOUT; DRM_DEBUG_KMS("%s\n", __func__); /* s/w reset */ cfg = (GSC_SW_RESET_SRESET); gsc_write(cfg, GSC_SW_RESET); /* wait s/w reset complete */ while (count--) { cfg = gsc_read(GSC_SW_RESET); if (!cfg) break; usleep_range(1000, 2000); } if (cfg) { DRM_ERROR("failed to reset gsc h/w.\n"); return -EBUSY; } /* reset sequence */ cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); cfg |= (GSC_IN_BASE_ADDR_MASK | GSC_IN_BASE_ADDR_PINGPONG(0)); gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); cfg |= (GSC_OUT_BASE_ADDR_MASK | GSC_OUT_BASE_ADDR_PINGPONG(0)); gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); return 0; } static void gsc_set_gscblk_fimd_wb(struct gsc_context *ctx, bool enable) { u32 gscblk_cfg; DRM_DEBUG_KMS("%s\n", __func__); gscblk_cfg = readl(SYSREG_GSCBLK_CFG1); if (enable) gscblk_cfg |= GSC_BLK_DISP1WB_DEST(ctx->id) | GSC_BLK_GSCL_WB_IN_SRC_SEL(ctx->id) | GSC_BLK_SW_RESET_WB_DEST(ctx->id); else gscblk_cfg |= GSC_BLK_PXLASYNC_LO_MASK_WB(ctx->id); writel(gscblk_cfg, SYSREG_GSCBLK_CFG1); } static void gsc_handle_irq(struct gsc_context *ctx, bool enable, bool overflow, bool done) { u32 cfg; DRM_DEBUG_KMS("%s:enable[%d]overflow[%d]level[%d]\n", __func__, enable, overflow, done); cfg = gsc_read(GSC_IRQ); cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK); if (enable) cfg |= GSC_IRQ_ENABLE; else cfg &= ~GSC_IRQ_ENABLE; if (overflow) cfg &= ~GSC_IRQ_OR_MASK; else cfg |= GSC_IRQ_OR_MASK; if (done) cfg &= ~GSC_IRQ_FRMDONE_MASK; else cfg |= GSC_IRQ_FRMDONE_MASK; gsc_write(cfg, GSC_IRQ); } static int gsc_src_set_fmt(struct device *dev, u32 fmt) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:fmt[0x%x]\n", __func__, fmt); cfg = gsc_read(GSC_IN_CON); cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK | GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK | GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE | GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK); switch (fmt) { case DRM_FORMAT_RGB565: cfg |= GSC_IN_RGB565; break; case DRM_FORMAT_XRGB8888: cfg |= GSC_IN_XRGB8888; break; case DRM_FORMAT_BGRX8888: cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP); break; case DRM_FORMAT_YUYV: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_ORDER_LSB_Y | GSC_IN_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_YVYU: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_ORDER_LSB_Y | GSC_IN_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_UYVY: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_OEDER_LSB_C | GSC_IN_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_VYUY: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_OEDER_LSB_C | GSC_IN_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P); break; case DRM_FORMAT_YUV422: cfg |= GSC_IN_YUV422_3P; break; case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: cfg |= GSC_IN_YUV420_3P; break; case DRM_FORMAT_NV12: case DRM_FORMAT_NV16: cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P); break; case DRM_FORMAT_NV12MT: cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE); break; default: dev_err(ippdrv->dev, "inavlid target yuv order 0x%x.\n", fmt); return -EINVAL; } gsc_write(cfg, GSC_IN_CON); return 0; } static int gsc_src_set_transf(struct device *dev, enum drm_exynos_degree degree, enum drm_exynos_flip flip, bool *swap) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:degree[%d]flip[0x%x]\n", __func__, degree, flip); cfg = gsc_read(GSC_IN_CON); cfg &= ~GSC_IN_ROT_MASK; switch (degree) { case EXYNOS_DRM_DEGREE_0: if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_XFLIP; if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_YFLIP; break; case EXYNOS_DRM_DEGREE_90: if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_90_XFLIP; else if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_90_YFLIP; else cfg |= GSC_IN_ROT_90; break; case EXYNOS_DRM_DEGREE_180: cfg |= GSC_IN_ROT_180; break; case EXYNOS_DRM_DEGREE_270: cfg |= GSC_IN_ROT_270; break; default: dev_err(ippdrv->dev, "inavlid degree value %d.\n", degree); return -EINVAL; } gsc_write(cfg, GSC_IN_CON); ctx->rotation = cfg & (GSC_IN_ROT_90 | GSC_IN_ROT_270) ? 1 : 0; *swap = ctx->rotation; return 0; } static int gsc_src_set_size(struct device *dev, int swap, struct drm_exynos_pos *pos, struct drm_exynos_sz *sz) { struct gsc_context *ctx = get_gsc_context(dev); struct drm_exynos_pos img_pos = *pos; struct gsc_scaler *sc = &ctx->sc; u32 cfg; DRM_DEBUG_KMS("%s:swap[%d]x[%d]y[%d]w[%d]h[%d]\n", __func__, swap, pos->x, pos->y, pos->w, pos->h); if (swap) { img_pos.w = pos->h; img_pos.h = pos->w; } /* pixel offset */ cfg = (GSC_SRCIMG_OFFSET_X(img_pos.x) | GSC_SRCIMG_OFFSET_Y(img_pos.y)); gsc_write(cfg, GSC_SRCIMG_OFFSET); /* cropped size */ cfg = (GSC_CROPPED_WIDTH(img_pos.w) | GSC_CROPPED_HEIGHT(img_pos.h)); gsc_write(cfg, GSC_CROPPED_SIZE); DRM_DEBUG_KMS("%s:hsize[%d]vsize[%d]\n", __func__, sz->hsize, sz->vsize); /* original size */ cfg = gsc_read(GSC_SRCIMG_SIZE); cfg &= ~(GSC_SRCIMG_HEIGHT_MASK | GSC_SRCIMG_WIDTH_MASK); cfg |= (GSC_SRCIMG_WIDTH(sz->hsize) | GSC_SRCIMG_HEIGHT(sz->vsize)); gsc_write(cfg, GSC_SRCIMG_SIZE); cfg = gsc_read(GSC_IN_CON); cfg &= ~GSC_IN_RGB_TYPE_MASK; DRM_DEBUG_KMS("%s:width[%d]range[%d]\n", __func__, pos->w, sc->range); if (pos->w >= GSC_WIDTH_ITU_709) if (sc->range) cfg |= GSC_IN_RGB_HD_WIDE; else cfg |= GSC_IN_RGB_HD_NARROW; else if (sc->range) cfg |= GSC_IN_RGB_SD_WIDE; else cfg |= GSC_IN_RGB_SD_NARROW; gsc_write(cfg, GSC_IN_CON); return 0; } static int gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id, enum drm_exynos_ipp_buf_type buf_type) { struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; bool masked; u32 cfg; u32 mask = 0x00000001 << buf_id; DRM_DEBUG_KMS("%s:buf_id[%d]buf_type[%d]\n", __func__, buf_id, buf_type); /* mask register set */ cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); switch (buf_type) { case IPP_BUF_ENQUEUE: masked = false; break; case IPP_BUF_DEQUEUE: masked = true; break; default: dev_err(ippdrv->dev, "invalid buf ctrl parameter.\n"); return -EINVAL; } /* sequence id */ cfg &= ~mask; cfg |= masked << buf_id; gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); return 0; } static int gsc_src_set_addr(struct device *dev, struct drm_exynos_ipp_buf_info *buf_info, u32 buf_id, enum drm_exynos_ipp_buf_type buf_type) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node; struct drm_exynos_ipp_property *property; if (!c_node) { DRM_ERROR("failed to get c_node.\n"); return -EFAULT; } property = &c_node->property; DRM_DEBUG_KMS("%s:prop_id[%d]buf_id[%d]buf_type[%d]\n", __func__, property->prop_id, buf_id, buf_type); if (buf_id > GSC_MAX_SRC) { dev_info(ippdrv->dev, "inavlid buf_id %d.\n", buf_id); return -EINVAL; } /* address register set */ switch (buf_type) { case IPP_BUF_ENQUEUE: gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_Y], GSC_IN_BASE_ADDR_Y(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CB], GSC_IN_BASE_ADDR_CB(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CR], GSC_IN_BASE_ADDR_CR(buf_id)); break; case IPP_BUF_DEQUEUE: gsc_write(0x0, GSC_IN_BASE_ADDR_Y(buf_id)); gsc_write(0x0, GSC_IN_BASE_ADDR_CB(buf_id)); gsc_write(0x0, GSC_IN_BASE_ADDR_CR(buf_id)); break; default: /* bypass */ break; } return gsc_src_set_buf_seq(ctx, buf_id, buf_type); } static struct exynos_drm_ipp_ops gsc_src_ops = { .set_fmt = gsc_src_set_fmt, .set_transf = gsc_src_set_transf, .set_size = gsc_src_set_size, .set_addr = gsc_src_set_addr, }; static int gsc_dst_set_fmt(struct device *dev, u32 fmt) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:fmt[0x%x]\n", __func__, fmt); cfg = gsc_read(GSC_OUT_CON); cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK | GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK | GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK | GSC_OUT_GLOBAL_ALPHA_MASK); switch (fmt) { case DRM_FORMAT_RGB565: cfg |= GSC_OUT_RGB565; break; case DRM_FORMAT_XRGB8888: cfg |= GSC_OUT_XRGB8888; break; case DRM_FORMAT_BGRX8888: cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP); break; case DRM_FORMAT_YUYV: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_ORDER_LSB_Y | GSC_OUT_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_YVYU: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_ORDER_LSB_Y | GSC_OUT_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_UYVY: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_OEDER_LSB_C | GSC_OUT_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_VYUY: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_OEDER_LSB_C | GSC_OUT_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P); break; case DRM_FORMAT_YUV422: case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: cfg |= GSC_OUT_YUV420_3P; break; case DRM_FORMAT_NV12: case DRM_FORMAT_NV16: cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P); break; case DRM_FORMAT_NV12MT: cfg |= (GSC_OUT_TILE_C_16x8 | GSC_OUT_TILE_MODE); break; default: dev_err(ippdrv->dev, "inavlid target yuv order 0x%x.\n", fmt); return -EINVAL; } gsc_write(cfg, GSC_OUT_CON); return 0; } static int gsc_dst_set_transf(struct device *dev, enum drm_exynos_degree degree, enum drm_exynos_flip flip, bool *swap) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; DRM_DEBUG_KMS("%s:degree[%d]flip[0x%x]\n", __func__, degree, flip); cfg = gsc_read(GSC_IN_CON); cfg &= ~GSC_IN_ROT_MASK; switch (degree) { case EXYNOS_DRM_DEGREE_0: if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_XFLIP; if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_YFLIP; break; case EXYNOS_DRM_DEGREE_90: if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_90_XFLIP; else if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_90_YFLIP; else cfg |= GSC_IN_ROT_90; break; case EXYNOS_DRM_DEGREE_180: cfg |= GSC_IN_ROT_180; break; case EXYNOS_DRM_DEGREE_270: cfg |= GSC_IN_ROT_270; break; default: dev_err(ippdrv->dev, "inavlid degree value %d.\n", degree); return -EINVAL; } gsc_write(cfg, GSC_IN_CON); ctx->rotation = cfg & (GSC_IN_ROT_90 | GSC_IN_ROT_270) ? 1 : 0; *swap = ctx->rotation; return 0; } static int gsc_get_ratio_shift(u32 src, u32 dst, u32 *ratio) { DRM_DEBUG_KMS("%s:src[%d]dst[%d]\n", __func__, src, dst); if (src >= dst * 8) { DRM_ERROR("failed to make ratio and shift.\n"); return -EINVAL; } else if (src >= dst * 4) *ratio = 4; else if (src >= dst * 2) *ratio = 2; else *ratio = 1; return 0; } static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor) { if (hratio == 4 && vratio == 4) *shfactor = 4; else if ((hratio == 4 && vratio == 2) || (hratio == 2 && vratio == 4)) *shfactor = 3; else if ((hratio == 4 && vratio == 1) || (hratio == 1 && vratio == 4) || (hratio == 2 && vratio == 2)) *shfactor = 2; else if (hratio == 1 && vratio == 1) *shfactor = 0; else *shfactor = 1; } static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc, struct drm_exynos_pos *src, struct drm_exynos_pos *dst) { struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; u32 cfg; u32 src_w, src_h, dst_w, dst_h; int ret = 0; src_w = src->w; src_h = src->h; if (ctx->rotation) { dst_w = dst->h; dst_h = dst->w; } else { dst_w = dst->w; dst_h = dst->h; } ret = gsc_get_ratio_shift(src_w, dst_w, &sc->pre_hratio); if (ret) { dev_err(ippdrv->dev, "failed to get ratio horizontal.\n"); return ret; } ret = gsc_get_ratio_shift(src_h, dst_h, &sc->pre_vratio); if (ret) { dev_err(ippdrv->dev, "failed to get ratio vertical.\n"); return ret; } DRM_DEBUG_KMS("%s:pre_hratio[%d]pre_vratio[%d]\n", __func__, sc->pre_hratio, sc->pre_vratio); sc->main_hratio = (src_w << 16) / dst_w; sc->main_vratio = (src_h << 16) / dst_h; DRM_DEBUG_KMS("%s:main_hratio[%ld]main_vratio[%ld]\n", __func__, sc->main_hratio, sc->main_vratio); gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio, &sc->pre_shfactor); DRM_DEBUG_KMS("%s:pre_shfactor[%d]\n", __func__, sc->pre_shfactor); cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) | GSC_PRESC_H_RATIO(sc->pre_hratio) | GSC_PRESC_V_RATIO(sc->pre_vratio)); gsc_write(cfg, GSC_PRE_SCALE_RATIO); return ret; } static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio) { int i, j, k, sc_ratio; if (main_hratio <= GSC_SC_UP_MAX_RATIO) sc_ratio = 0; else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8) sc_ratio = 1; else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8) sc_ratio = 2; else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8) sc_ratio = 3; else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8) sc_ratio = 4; else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8) sc_ratio = 5; else sc_ratio = 6; for (i = 0; i < GSC_COEF_PHASE; i++) for (j = 0; j < GSC_COEF_H_8T; j++) for (k = 0; k < GSC_COEF_DEPTH; k++) gsc_write(h_coef_8t[sc_ratio][i][j], GSC_HCOEF(i, j, k)); } static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio) { int i, j, k, sc_ratio; if (main_vratio <= GSC_SC_UP_MAX_RATIO) sc_ratio = 0; else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8) sc_ratio = 1; else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8) sc_ratio = 2; else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8) sc_ratio = 3; else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8) sc_ratio = 4; else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8) sc_ratio = 5; else sc_ratio = 6; for (i = 0; i < GSC_COEF_PHASE; i++) for (j = 0; j < GSC_COEF_V_4T; j++) for (k = 0; k < GSC_COEF_DEPTH; k++) gsc_write(v_coef_4t[sc_ratio][i][j], GSC_VCOEF(i, j, k)); } static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc) { u32 cfg; DRM_DEBUG_KMS("%s:main_hratio[%ld]main_vratio[%ld]\n", __func__, sc->main_hratio, sc->main_vratio); gsc_set_h_coef(ctx, sc->main_hratio); cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio); gsc_write(cfg, GSC_MAIN_H_RATIO); gsc_set_v_coef(ctx, sc->main_vratio); cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio); gsc_write(cfg, GSC_MAIN_V_RATIO); } static int gsc_dst_set_size(struct device *dev, int swap, struct drm_exynos_pos *pos, struct drm_exynos_sz *sz) { struct gsc_context *ctx = get_gsc_context(dev); struct drm_exynos_pos img_pos = *pos; struct gsc_scaler *sc = &ctx->sc; u32 cfg; DRM_DEBUG_KMS("%s:swap[%d]x[%d]y[%d]w[%d]h[%d]\n", __func__, swap, pos->x, pos->y, pos->w, pos->h); if (swap) { img_pos.w = pos->h; img_pos.h = pos->w; } /* pixel offset */ cfg = (GSC_DSTIMG_OFFSET_X(pos->x) | GSC_DSTIMG_OFFSET_Y(pos->y)); gsc_write(cfg, GSC_DSTIMG_OFFSET); /* scaled size */ cfg = (GSC_SCALED_WIDTH(img_pos.w) | GSC_SCALED_HEIGHT(img_pos.h)); gsc_write(cfg, GSC_SCALED_SIZE); DRM_DEBUG_KMS("%s:hsize[%d]vsize[%d]\n", __func__, sz->hsize, sz->vsize); /* original size */ cfg = gsc_read(GSC_DSTIMG_SIZE); cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK); cfg |= (GSC_DSTIMG_WIDTH(sz->hsize) | GSC_DSTIMG_HEIGHT(sz->vsize)); gsc_write(cfg, GSC_DSTIMG_SIZE); cfg = gsc_read(GSC_OUT_CON); cfg &= ~GSC_OUT_RGB_TYPE_MASK; DRM_DEBUG_KMS("%s:width[%d]range[%d]\n", __func__, pos->w, sc->range); if (pos->w >= GSC_WIDTH_ITU_709) if (sc->range) cfg |= GSC_OUT_RGB_HD_WIDE; else cfg |= GSC_OUT_RGB_HD_NARROW; else if (sc->range) cfg |= GSC_OUT_RGB_SD_WIDE; else cfg |= GSC_OUT_RGB_SD_NARROW; gsc_write(cfg, GSC_OUT_CON); return 0; } static int gsc_dst_get_buf_seq(struct gsc_context *ctx) { u32 cfg, i, buf_num = GSC_REG_SZ; u32 mask = 0x00000001; cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); for (i = 0; i < GSC_REG_SZ; i++) if (cfg & (mask << i)) buf_num--; DRM_DEBUG_KMS("%s:buf_num[%d]\n", __func__, buf_num); return buf_num; } static int gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id, enum drm_exynos_ipp_buf_type buf_type) { struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; bool masked; u32 cfg; u32 mask = 0x00000001 << buf_id; int ret = 0; DRM_DEBUG_KMS("%s:buf_id[%d]buf_type[%d]\n", __func__, buf_id, buf_type); mutex_lock(&ctx->lock); /* mask register set */ cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); switch (buf_type) { case IPP_BUF_ENQUEUE: masked = false; break; case IPP_BUF_DEQUEUE: masked = true; break; default: dev_err(ippdrv->dev, "invalid buf ctrl parameter.\n"); ret = -EINVAL; goto err_unlock; } /* sequence id */ cfg &= ~mask; cfg |= masked << buf_id; gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); /* interrupt enable */ if (buf_type == IPP_BUF_ENQUEUE && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START) gsc_handle_irq(ctx, true, false, true); /* interrupt disable */ if (buf_type == IPP_BUF_DEQUEUE && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP) gsc_handle_irq(ctx, false, false, true); err_unlock: mutex_unlock(&ctx->lock); return ret; } static int gsc_dst_set_addr(struct device *dev, struct drm_exynos_ipp_buf_info *buf_info, u32 buf_id, enum drm_exynos_ipp_buf_type buf_type) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node; struct drm_exynos_ipp_property *property; if (!c_node) { DRM_ERROR("failed to get c_node.\n"); return -EFAULT; } property = &c_node->property; DRM_DEBUG_KMS("%s:prop_id[%d]buf_id[%d]buf_type[%d]\n", __func__, property->prop_id, buf_id, buf_type); if (buf_id > GSC_MAX_DST) { dev_info(ippdrv->dev, "inavlid buf_id %d.\n", buf_id); return -EINVAL; } /* address register set */ switch (buf_type) { case IPP_BUF_ENQUEUE: gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_Y], GSC_OUT_BASE_ADDR_Y(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CB], GSC_OUT_BASE_ADDR_CB(buf_id)); gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CR], GSC_OUT_BASE_ADDR_CR(buf_id)); break; case IPP_BUF_DEQUEUE: gsc_write(0x0, GSC_OUT_BASE_ADDR_Y(buf_id)); gsc_write(0x0, GSC_OUT_BASE_ADDR_CB(buf_id)); gsc_write(0x0, GSC_OUT_BASE_ADDR_CR(buf_id)); break; default: /* bypass */ break; } return gsc_dst_set_buf_seq(ctx, buf_id, buf_type); } static struct exynos_drm_ipp_ops gsc_dst_ops = { .set_fmt = gsc_dst_set_fmt, .set_transf = gsc_dst_set_transf, .set_size = gsc_dst_set_size, .set_addr = gsc_dst_set_addr, }; static int gsc_clk_ctrl(struct gsc_context *ctx, bool enable) { DRM_DEBUG_KMS("%s:enable[%d]\n", __func__, enable); if (enable) { clk_enable(ctx->gsc_clk); ctx->suspended = false; } else { clk_disable(ctx->gsc_clk); ctx->suspended = true; } return 0; } static int gsc_get_src_buf_index(struct gsc_context *ctx) { u32 cfg, curr_index, i; u32 buf_id = GSC_MAX_SRC; int ret; DRM_DEBUG_KMS("%s:gsc id[%d]\n", __func__, ctx->id); cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); curr_index = GSC_IN_CURR_GET_INDEX(cfg); for (i = curr_index; i < GSC_MAX_SRC; i++) { if (!((cfg >> i) & 0x1)) { buf_id = i; break; } } if (buf_id == GSC_MAX_SRC) { DRM_ERROR("failed to get in buffer index.\n"); return -EINVAL; } ret = gsc_src_set_buf_seq(ctx, buf_id, IPP_BUF_DEQUEUE); if (ret < 0) { DRM_ERROR("failed to dequeue.\n"); return ret; } DRM_DEBUG_KMS("%s:cfg[0x%x]curr_index[%d]buf_id[%d]\n", __func__, cfg, curr_index, buf_id); return buf_id; } static int gsc_get_dst_buf_index(struct gsc_context *ctx) { u32 cfg, curr_index, i; u32 buf_id = GSC_MAX_DST; int ret; DRM_DEBUG_KMS("%s:gsc id[%d]\n", __func__, ctx->id); cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); curr_index = GSC_OUT_CURR_GET_INDEX(cfg); for (i = curr_index; i < GSC_MAX_DST; i++) { if (!((cfg >> i) & 0x1)) { buf_id = i; break; } } if (buf_id == GSC_MAX_DST) { DRM_ERROR("failed to get out buffer index.\n"); return -EINVAL; } ret = gsc_dst_set_buf_seq(ctx, buf_id, IPP_BUF_DEQUEUE); if (ret < 0) { DRM_ERROR("failed to dequeue.\n"); return ret; } DRM_DEBUG_KMS("%s:cfg[0x%x]curr_index[%d]buf_id[%d]\n", __func__, cfg, curr_index, buf_id); return buf_id; } static irqreturn_t gsc_irq_handler(int irq, void *dev_id) { struct gsc_context *ctx = dev_id; struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node; struct drm_exynos_ipp_event_work *event_work = c_node->event_work; u32 status; int buf_id[EXYNOS_DRM_OPS_MAX]; DRM_DEBUG_KMS("%s:gsc id[%d]\n", __func__, ctx->id); status = gsc_read(GSC_IRQ); if (status & GSC_IRQ_STATUS_OR_IRQ) { dev_err(ippdrv->dev, "occured overflow at %d, status 0x%x.\n", ctx->id, status); return IRQ_NONE; } if (status & GSC_IRQ_STATUS_OR_FRM_DONE) { dev_dbg(ippdrv->dev, "occured frame done at %d, status 0x%x.\n", ctx->id, status); buf_id[EXYNOS_DRM_OPS_SRC] = gsc_get_src_buf_index(ctx); if (buf_id[EXYNOS_DRM_OPS_SRC] < 0) return IRQ_HANDLED; buf_id[EXYNOS_DRM_OPS_DST] = gsc_get_dst_buf_index(ctx); if (buf_id[EXYNOS_DRM_OPS_DST] < 0) return IRQ_HANDLED; DRM_DEBUG_KMS("%s:buf_id_src[%d]buf_id_dst[%d]\n", __func__, buf_id[EXYNOS_DRM_OPS_SRC], buf_id[EXYNOS_DRM_OPS_DST]); event_work->ippdrv = ippdrv; event_work->buf_id[EXYNOS_DRM_OPS_SRC] = buf_id[EXYNOS_DRM_OPS_SRC]; event_work->buf_id[EXYNOS_DRM_OPS_DST] = buf_id[EXYNOS_DRM_OPS_DST]; queue_work(ippdrv->event_workq, (struct work_struct *)event_work); } return IRQ_HANDLED; } static int gsc_init_prop_list(struct exynos_drm_ippdrv *ippdrv) { struct drm_exynos_ipp_prop_list *prop_list; DRM_DEBUG_KMS("%s\n", __func__); prop_list = devm_kzalloc(ippdrv->dev, sizeof(*prop_list), GFP_KERNEL); if (!prop_list) { DRM_ERROR("failed to alloc property list.\n"); return -ENOMEM; } prop_list->version = 1; prop_list->writeback = 1; prop_list->refresh_min = GSC_REFRESH_MIN; prop_list->refresh_max = GSC_REFRESH_MAX; prop_list->flip = (1 << EXYNOS_DRM_FLIP_VERTICAL) | (1 << EXYNOS_DRM_FLIP_HORIZONTAL); prop_list->degree = (1 << EXYNOS_DRM_DEGREE_0) | (1 << EXYNOS_DRM_DEGREE_90) | (1 << EXYNOS_DRM_DEGREE_180) | (1 << EXYNOS_DRM_DEGREE_270); prop_list->csc = 1; prop_list->crop = 1; prop_list->crop_max.hsize = GSC_CROP_MAX; prop_list->crop_max.vsize = GSC_CROP_MAX; prop_list->crop_min.hsize = GSC_CROP_MIN; prop_list->crop_min.vsize = GSC_CROP_MIN; prop_list->scale = 1; prop_list->scale_max.hsize = GSC_SCALE_MAX; prop_list->scale_max.vsize = GSC_SCALE_MAX; prop_list->scale_min.hsize = GSC_SCALE_MIN; prop_list->scale_min.vsize = GSC_SCALE_MIN; ippdrv->prop_list = prop_list; return 0; } static inline bool gsc_check_drm_flip(enum drm_exynos_flip flip) { switch (flip) { case EXYNOS_DRM_FLIP_NONE: case EXYNOS_DRM_FLIP_VERTICAL: case EXYNOS_DRM_FLIP_HORIZONTAL: case EXYNOS_DRM_FLIP_BOTH: return true; default: DRM_DEBUG_KMS("%s:invalid flip\n", __func__); return false; } } static int gsc_ippdrv_check_property(struct device *dev, struct drm_exynos_ipp_property *property) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_prop_list *pp = ippdrv->prop_list; struct drm_exynos_ipp_config *config; struct drm_exynos_pos *pos; struct drm_exynos_sz *sz; bool swap; int i; DRM_DEBUG_KMS("%s\n", __func__); for_each_ipp_ops(i) { if ((i == EXYNOS_DRM_OPS_SRC) && (property->cmd == IPP_CMD_WB)) continue; config = &property->config[i]; pos = &config->pos; sz = &config->sz; /* check for flip */ if (!gsc_check_drm_flip(config->flip)) { DRM_ERROR("invalid flip.\n"); goto err_property; } /* check for degree */ switch (config->degree) { case EXYNOS_DRM_DEGREE_90: case EXYNOS_DRM_DEGREE_270: swap = true; break; case EXYNOS_DRM_DEGREE_0: case EXYNOS_DRM_DEGREE_180: swap = false; break; default: DRM_ERROR("invalid degree.\n"); goto err_property; } /* check for buffer bound */ if ((pos->x + pos->w > sz->hsize) || (pos->y + pos->h > sz->vsize)) { DRM_ERROR("out of buf bound.\n"); goto err_property; } /* check for crop */ if ((i == EXYNOS_DRM_OPS_SRC) && (pp->crop)) { if (swap) { if ((pos->h < pp->crop_min.hsize) || (sz->vsize > pp->crop_max.hsize) || (pos->w < pp->crop_min.vsize) || (sz->hsize > pp->crop_max.vsize)) { DRM_ERROR("out of crop size.\n"); goto err_property; } } else { if ((pos->w < pp->crop_min.hsize) || (sz->hsize > pp->crop_max.hsize) || (pos->h < pp->crop_min.vsize) || (sz->vsize > pp->crop_max.vsize)) { DRM_ERROR("out of crop size.\n"); goto err_property; } } } /* check for scale */ if ((i == EXYNOS_DRM_OPS_DST) && (pp->scale)) { if (swap) { if ((pos->h < pp->scale_min.hsize) || (sz->vsize > pp->scale_max.hsize) || (pos->w < pp->scale_min.vsize) || (sz->hsize > pp->scale_max.vsize)) { DRM_ERROR("out of scale size.\n"); goto err_property; } } else { if ((pos->w < pp->scale_min.hsize) || (sz->hsize > pp->scale_max.hsize) || (pos->h < pp->scale_min.vsize) || (sz->vsize > pp->scale_max.vsize)) { DRM_ERROR("out of scale size.\n"); goto err_property; } } } } return 0; err_property: for_each_ipp_ops(i) { if ((i == EXYNOS_DRM_OPS_SRC) && (property->cmd == IPP_CMD_WB)) continue; config = &property->config[i]; pos = &config->pos; sz = &config->sz; DRM_ERROR("[%s]f[%d]r[%d]pos[%d %d %d %d]sz[%d %d]\n", i ? "dst" : "src", config->flip, config->degree, pos->x, pos->y, pos->w, pos->h, sz->hsize, sz->vsize); } return -EINVAL; } static int gsc_ippdrv_reset(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); struct gsc_scaler *sc = &ctx->sc; int ret; DRM_DEBUG_KMS("%s\n", __func__); /* reset h/w block */ ret = gsc_sw_reset(ctx); if (ret < 0) { dev_err(dev, "failed to reset hardware.\n"); return ret; } /* scaler setting */ memset(&ctx->sc, 0x0, sizeof(ctx->sc)); sc->range = true; return 0; } static int gsc_ippdrv_start(struct device *dev, enum drm_exynos_ipp_cmd cmd) { struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node; struct drm_exynos_ipp_property *property; struct drm_exynos_ipp_config *config; struct drm_exynos_pos img_pos[EXYNOS_DRM_OPS_MAX]; struct drm_exynos_ipp_set_wb set_wb; u32 cfg; int ret, i; DRM_DEBUG_KMS("%s:cmd[%d]\n", __func__, cmd); if (!c_node) { DRM_ERROR("failed to get c_node.\n"); return -EINVAL; } property = &c_node->property; gsc_handle_irq(ctx, true, false, true); for_each_ipp_ops(i) { config = &property->config[i]; img_pos[i] = config->pos; } switch (cmd) { case IPP_CMD_M2M: /* enable one shot */ cfg = gsc_read(GSC_ENABLE); cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK | GSC_ENABLE_CLK_GATE_MODE_MASK); cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT; gsc_write(cfg, GSC_ENABLE); /* src dma memory */ cfg = gsc_read(GSC_IN_CON); cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK); cfg |= GSC_IN_PATH_MEMORY; gsc_write(cfg, GSC_IN_CON); /* dst dma memory */ cfg = gsc_read(GSC_OUT_CON); cfg |= GSC_OUT_PATH_MEMORY; gsc_write(cfg, GSC_OUT_CON); break; case IPP_CMD_WB: set_wb.enable = 1; set_wb.refresh = property->refresh_rate; gsc_set_gscblk_fimd_wb(ctx, set_wb.enable); exynos_drm_ippnb_send_event(IPP_SET_WRITEBACK, (void *)&set_wb); /* src local path */ cfg = gsc_read(GSC_IN_CON); cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK); cfg |= (GSC_IN_PATH_LOCAL | GSC_IN_LOCAL_FIMD_WB); gsc_write(cfg, GSC_IN_CON); /* dst dma memory */ cfg = gsc_read(GSC_OUT_CON); cfg |= GSC_OUT_PATH_MEMORY; gsc_write(cfg, GSC_OUT_CON); break; case IPP_CMD_OUTPUT: /* src dma memory */ cfg = gsc_read(GSC_IN_CON); cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK); cfg |= GSC_IN_PATH_MEMORY; gsc_write(cfg, GSC_IN_CON); /* dst local path */ cfg = gsc_read(GSC_OUT_CON); cfg |= GSC_OUT_PATH_MEMORY; gsc_write(cfg, GSC_OUT_CON); break; default: ret = -EINVAL; dev_err(dev, "invalid operations.\n"); return ret; } ret = gsc_set_prescaler(ctx, &ctx->sc, &img_pos[EXYNOS_DRM_OPS_SRC], &img_pos[EXYNOS_DRM_OPS_DST]); if (ret) { dev_err(dev, "failed to set precalser.\n"); return ret; } gsc_set_scaler(ctx, &ctx->sc); cfg = gsc_read(GSC_ENABLE); cfg |= GSC_ENABLE_ON; gsc_write(cfg, GSC_ENABLE); return 0; } static void gsc_ippdrv_stop(struct device *dev, enum drm_exynos_ipp_cmd cmd) { struct gsc_context *ctx = get_gsc_context(dev); struct drm_exynos_ipp_set_wb set_wb = {0, 0}; u32 cfg; DRM_DEBUG_KMS("%s:cmd[%d]\n", __func__, cmd); switch (cmd) { case IPP_CMD_M2M: /* bypass */ break; case IPP_CMD_WB: gsc_set_gscblk_fimd_wb(ctx, set_wb.enable); exynos_drm_ippnb_send_event(IPP_SET_WRITEBACK, (void *)&set_wb); break; case IPP_CMD_OUTPUT: default: dev_err(dev, "invalid operations.\n"); break; } gsc_handle_irq(ctx, false, false, true); /* reset sequence */ gsc_write(0xff, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(0xff, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(0xff, GSC_OUT_BASE_ADDR_CR_MASK); cfg = gsc_read(GSC_ENABLE); cfg &= ~GSC_ENABLE_ON; gsc_write(cfg, GSC_ENABLE); } static int gsc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct gsc_context *ctx; struct resource *res; struct exynos_drm_ippdrv *ippdrv; int ret; ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; /* clock control */ ctx->gsc_clk = devm_clk_get(dev, "gscl"); if (IS_ERR(ctx->gsc_clk)) { dev_err(dev, "failed to get gsc clock.\n"); return PTR_ERR(ctx->gsc_clk); } /* resource memory */ ctx->regs_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ctx->regs = devm_ioremap_resource(dev, ctx->regs_res); if (IS_ERR(ctx->regs)) return PTR_ERR(ctx->regs); /* resource irq */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(dev, "failed to request irq resource.\n"); return -ENOENT; } ctx->irq = res->start; ret = devm_request_threaded_irq(dev, ctx->irq, NULL, gsc_irq_handler, IRQF_ONESHOT, "drm_gsc", ctx); if (ret < 0) { dev_err(dev, "failed to request irq.\n"); return ret; } /* context initailization */ ctx->id = pdev->id; ippdrv = &ctx->ippdrv; ippdrv->dev = dev; ippdrv->ops[EXYNOS_DRM_OPS_SRC] = &gsc_src_ops; ippdrv->ops[EXYNOS_DRM_OPS_DST] = &gsc_dst_ops; ippdrv->check_property = gsc_ippdrv_check_property; ippdrv->reset = gsc_ippdrv_reset; ippdrv->start = gsc_ippdrv_start; ippdrv->stop = gsc_ippdrv_stop; ret = gsc_init_prop_list(ippdrv); if (ret < 0) { dev_err(dev, "failed to init property list.\n"); return ret; } DRM_DEBUG_KMS("%s:id[%d]ippdrv[0x%x]\n", __func__, ctx->id, (int)ippdrv); mutex_init(&ctx->lock); platform_set_drvdata(pdev, ctx); pm_runtime_set_active(dev); pm_runtime_enable(dev); ret = exynos_drm_ippdrv_register(ippdrv); if (ret < 0) { dev_err(dev, "failed to register drm gsc device.\n"); goto err_ippdrv_register; } dev_info(dev, "drm gsc registered successfully.\n"); return 0; err_ippdrv_register: pm_runtime_disable(dev); return ret; } static int gsc_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct gsc_context *ctx = get_gsc_context(dev); struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; exynos_drm_ippdrv_unregister(ippdrv); mutex_destroy(&ctx->lock); pm_runtime_set_suspended(dev); pm_runtime_disable(dev); return 0; } #ifdef CONFIG_PM_SLEEP static int gsc_suspend(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __func__, ctx->id); if (pm_runtime_suspended(dev)) return 0; return gsc_clk_ctrl(ctx, false); } static int gsc_resume(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __func__, ctx->id); if (!pm_runtime_suspended(dev)) return gsc_clk_ctrl(ctx, true); return 0; } #endif #ifdef CONFIG_PM_RUNTIME static int gsc_runtime_suspend(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __func__, ctx->id); return gsc_clk_ctrl(ctx, false); } static int gsc_runtime_resume(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); DRM_DEBUG_KMS("%s:id[%d]\n", __FILE__, ctx->id); return gsc_clk_ctrl(ctx, true); } #endif static const struct dev_pm_ops gsc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(gsc_suspend, gsc_resume) SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL) }; struct platform_driver gsc_driver = { .probe = gsc_probe, .remove = gsc_remove, .driver = { .name = "exynos-drm-gsc", .owner = THIS_MODULE, .pm = &gsc_pm_ops, }, };