/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Copyright (c) 2005 Linas Vepstas */ #include #include #include #include #include #include #include #include #include #include /** Overview: * EEH error states may be detected within exception handlers; * however, the recovery processing needs to occur asynchronously * in a normal kernel context and not an interrupt context. * This pair of routines creates an event and queues it onto a * work-queue, where a worker thread can drive recovery. */ /* EEH event workqueue setup. */ static DEFINE_SPINLOCK(eeh_eventlist_lock); LIST_HEAD(eeh_eventlist); static void eeh_thread_launcher(struct work_struct *); DECLARE_WORK(eeh_event_wq, eeh_thread_launcher); /* Serialize reset sequences for a given pci device */ DEFINE_MUTEX(eeh_event_mutex); /** * eeh_event_handler - Dispatch EEH events. * @dummy - unused * * The detection of a frozen slot can occur inside an interrupt, * where it can be hard to do anything about it. The goal of this * routine is to pull these detection events out of the context * of the interrupt handler, and re-dispatch them for processing * at a later time in a normal context. */ static int eeh_event_handler(void * dummy) { unsigned long flags; struct eeh_event *event; struct eeh_pe *pe; spin_lock_irqsave(&eeh_eventlist_lock, flags); event = NULL; /* Unqueue the event, get ready to process. */ if (!list_empty(&eeh_eventlist)) { event = list_entry(eeh_eventlist.next, struct eeh_event, list); list_del(&event->list); } spin_unlock_irqrestore(&eeh_eventlist_lock, flags); if (event == NULL) return 0; /* Serialize processing of EEH events */ mutex_lock(&eeh_event_mutex); pe = event->pe; eeh_pe_state_mark(pe, EEH_PE_RECOVERING); pr_info("EEH: Detected PCI bus error on PHB#%d-PE#%x\n", pe->phb->global_number, pe->addr); set_current_state(TASK_INTERRUPTIBLE); /* Don't add to load average */ eeh_handle_event(pe); eeh_pe_state_clear(pe, EEH_PE_RECOVERING); kfree(event); mutex_unlock(&eeh_event_mutex); /* If there are no new errors after an hour, clear the counter. */ if (pe && pe->freeze_count > 0) { msleep_interruptible(3600*1000); if (pe->freeze_count > 0) pe->freeze_count--; } return 0; } /** * eeh_thread_launcher - Start kernel thread to handle EEH events * @dummy - unused * * This routine is called to start the kernel thread for processing * EEH event. */ static void eeh_thread_launcher(struct work_struct *dummy) { if (IS_ERR(kthread_run(eeh_event_handler, NULL, "eehd"))) printk(KERN_ERR "Failed to start EEH daemon\n"); } /** * eeh_send_failure_event - Generate a PCI error event * @pe: EEH PE * * This routine can be called within an interrupt context; * the actual event will be delivered in a normal context * (from a workqueue). */ int eeh_send_failure_event(struct eeh_pe *pe) { unsigned long flags; struct eeh_event *event; event = kzalloc(sizeof(*event), GFP_ATOMIC); if (!event) { pr_err("EEH: out of memory, event not handled\n"); return -ENOMEM; } event->pe = pe; /* We may or may not be called in an interrupt context */ spin_lock_irqsave(&eeh_eventlist_lock, flags); list_add(&event->list, &eeh_eventlist); spin_unlock_irqrestore(&eeh_eventlist_lock, flags); schedule_work(&eeh_event_wq); return 0; }