/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_decl.h" #ifdef CONFIG_PPC_STD_MMU_64 #if PGTABLE_RANGE > USER_VSID_RANGE #warning Limited user VSID range means pagetable space is wasted #endif #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE) #warning TASK_SIZE is smaller than it needs to be. #endif #endif /* CONFIG_PPC_STD_MMU_64 */ phys_addr_t memstart_addr = ~0; EXPORT_SYMBOL_GPL(memstart_addr); phys_addr_t kernstart_addr; EXPORT_SYMBOL_GPL(kernstart_addr); void free_initmem(void) { unsigned long addr; addr = (unsigned long)__init_begin; for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); free_page(addr); totalram_pages++; } printk ("Freeing unused kernel memory: %luk freed\n", ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); init_page_count(virt_to_page(start)); free_page(start); totalram_pages++; } } #endif static void pgd_ctor(void *addr) { memset(addr, 0, PGD_TABLE_SIZE); } static void pmd_ctor(void *addr) { memset(addr, 0, PMD_TABLE_SIZE); } struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE]; /* * Create a kmem_cache() for pagetables. This is not used for PTE * pages - they're linked to struct page, come from the normal free * pages pool and have a different entry size (see real_pte_t) to * everything else. Caches created by this function are used for all * the higher level pagetables, and for hugepage pagetables. */ void pgtable_cache_add(unsigned shift, void (*ctor)(void *)) { char *name; unsigned long table_size = sizeof(void *) << shift; unsigned long align = table_size; /* When batching pgtable pointers for RCU freeing, we store * the index size in the low bits. Table alignment must be * big enough to fit it. * * Likewise, hugeapge pagetable pointers contain a (different) * shift value in the low bits. All tables must be aligned so * as to leave enough 0 bits in the address to contain it. */ unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1, HUGEPD_SHIFT_MASK + 1); struct kmem_cache *new; /* It would be nice if this was a BUILD_BUG_ON(), but at the * moment, gcc doesn't seem to recognize is_power_of_2 as a * constant expression, so so much for that. */ BUG_ON(!is_power_of_2(minalign)); BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE)); if (PGT_CACHE(shift)) return; /* Already have a cache of this size */ align = max_t(unsigned long, align, minalign); name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift); new = kmem_cache_create(name, table_size, align, 0, ctor); PGT_CACHE(shift) = new; pr_debug("Allocated pgtable cache for order %d\n", shift); } void pgtable_cache_init(void) { pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor); pgtable_cache_add(PMD_INDEX_SIZE, pmd_ctor); if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_INDEX_SIZE)) panic("Couldn't allocate pgtable caches"); /* In all current configs, when the PUD index exists it's the * same size as either the pgd or pmd index. Verify that the * initialization above has also created a PUD cache. This * will need re-examiniation if we add new possibilities for * the pagetable layout. */ BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE)); } #ifdef CONFIG_SPARSEMEM_VMEMMAP /* * Given an address within the vmemmap, determine the pfn of the page that * represents the start of the section it is within. Note that we have to * do this by hand as the proffered address may not be correctly aligned. * Subtraction of non-aligned pointers produces undefined results. */ static unsigned long __meminit vmemmap_section_start(unsigned long page) { unsigned long offset = page - ((unsigned long)(vmemmap)); /* Return the pfn of the start of the section. */ return (offset / sizeof(struct page)) & PAGE_SECTION_MASK; } /* * Check if this vmemmap page is already initialised. If any section * which overlaps this vmemmap page is initialised then this page is * initialised already. */ static int __meminit vmemmap_populated(unsigned long start, int page_size) { unsigned long end = start + page_size; for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page))) if (pfn_valid(vmemmap_section_start(start))) return 1; return 0; } /* On hash-based CPUs, the vmemmap is bolted in the hash table. * * On Book3E CPUs, the vmemmap is currently mapped in the top half of * the vmalloc space using normal page tables, though the size of * pages encoded in the PTEs can be different */ #ifdef CONFIG_PPC_BOOK3E static void __meminit vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys) { /* Create a PTE encoding without page size */ unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW; /* PTEs only contain page size encodings up to 32M */ BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf); /* Encode the size in the PTE */ flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8; /* For each PTE for that area, map things. Note that we don't * increment phys because all PTEs are of the large size and * thus must have the low bits clear */ for (i = 0; i < page_size; i += PAGE_SIZE) BUG_ON(map_kernel_page(start + i, phys, flags)); } #else /* CONFIG_PPC_BOOK3E */ static void __meminit vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys) { int mapped = htab_bolt_mapping(start, start + page_size, phys, PAGE_KERNEL, mmu_vmemmap_psize, mmu_kernel_ssize); BUG_ON(mapped < 0); } #endif /* CONFIG_PPC_BOOK3E */ struct vmemmap_backing *vmemmap_list; static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) { static struct vmemmap_backing *next; static int num_left; /* allocate a page when required and hand out chunks */ if (!next || !num_left) { next = vmemmap_alloc_block(PAGE_SIZE, node); if (unlikely(!next)) { WARN_ON(1); return NULL; } num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); } num_left--; return next++; } static __meminit void vmemmap_list_populate(unsigned long phys, unsigned long start, int node) { struct vmemmap_backing *vmem_back; vmem_back = vmemmap_list_alloc(node); if (unlikely(!vmem_back)) { WARN_ON(1); return; } vmem_back->phys = phys; vmem_back->virt_addr = start; vmem_back->list = vmemmap_list; vmemmap_list = vmem_back; } int __meminit vmemmap_populate(struct page *start_page, unsigned long nr_pages, int node) { unsigned long start = (unsigned long)start_page; unsigned long end = (unsigned long)(start_page + nr_pages); unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; /* Align to the page size of the linear mapping. */ start = _ALIGN_DOWN(start, page_size); pr_debug("vmemmap_populate page %p, %ld pages, node %d\n", start_page, nr_pages, node); pr_debug(" -> map %lx..%lx\n", start, end); for (; start < end; start += page_size) { void *p; if (vmemmap_populated(start, page_size)) continue; p = vmemmap_alloc_block(page_size, node); if (!p) return -ENOMEM; vmemmap_list_populate(__pa(p), start, node); pr_debug(" * %016lx..%016lx allocated at %p\n", start, start + page_size, p); vmemmap_create_mapping(start, page_size, __pa(p)); } return 0; } #endif /* CONFIG_SPARSEMEM_VMEMMAP */