/* * lppaca.h * Copyright (C) 2001 Mike Corrigan IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _ASM_POWERPC_LPPACA_H #define _ASM_POWERPC_LPPACA_H #ifdef __KERNEL__ /* These definitions relate to hypervisors that only exist when using * a server type processor */ #ifdef CONFIG_PPC_BOOK3S //============================================================================= // // This control block contains the data that is shared between the // hypervisor (PLIC) and the OS. // // //---------------------------------------------------------------------------- #include #include #include #include /* * We only have to have statically allocated lppaca structs on * legacy iSeries, which supports at most 64 cpus. */ #ifdef CONFIG_PPC_ISERIES #if NR_CPUS < 64 #define NR_LPPACAS NR_CPUS #else #define NR_LPPACAS 64 #endif #else /* not iSeries */ #define NR_LPPACAS 1 #endif /* The Hypervisor barfs if the lppaca crosses a page boundary. A 1k * alignment is sufficient to prevent this */ struct lppaca { //============================================================================= // CACHE_LINE_1 0x0000 - 0x007F Contains read-only data // NOTE: The xDynXyz fields are fields that will be dynamically changed by // PLIC when preparing to bring a processor online or when dispatching a // virtual processor! //============================================================================= u32 desc; // Eye catcher 0xD397D781 x00-x03 u16 size; // Size of this struct x04-x05 u16 reserved1; // Reserved x06-x07 u16 reserved2:14; // Reserved x08-x09 u8 shared_proc:1; // Shared processor indicator ... u8 secondary_thread:1; // Secondary thread indicator ... volatile u8 dyn_proc_status:8; // Dynamic Status of this proc x0A-x0A u8 secondary_thread_count; // Secondary thread count x0B-x0B volatile u16 dyn_hv_phys_proc_index;// Dynamic HV Physical Proc Index0C-x0D volatile u16 dyn_hv_log_proc_index;// Dynamic HV Logical Proc Indexx0E-x0F u32 decr_val; // Value for Decr programming x10-x13 u32 pmc_val; // Value for PMC regs x14-x17 volatile u32 dyn_hw_node_id; // Dynamic Hardware Node id x18-x1B volatile u32 dyn_hw_proc_id; // Dynamic Hardware Proc Id x1C-x1F volatile u32 dyn_pir; // Dynamic ProcIdReg value x20-x23 u32 dsei_data; // DSEI data x24-x27 u64 sprg3; // SPRG3 value x28-x2F u8 reserved3[40]; // Reserved x30-x57 volatile u8 vphn_assoc_counts[8]; // Virtual processor home node // associativity change counters x58-x5F u8 reserved4[32]; // Reserved x60-x7F //============================================================================= // CACHE_LINE_2 0x0080 - 0x00FF Contains local read-write data //============================================================================= // This Dword contains a byte for each type of interrupt that can occur. // The IPI is a count while the others are just a binary 1 or 0. union { u64 any_int; struct { u16 reserved; // Reserved - cleared by #mpasmbl u8 xirr_int; // Indicates xXirrValue is valid or Immed IO u8 ipi_cnt; // IPI Count u8 decr_int; // DECR interrupt occurred u8 pdc_int; // PDC interrupt occurred u8 quantum_int; // Interrupt quantum reached u8 old_plic_deferred_ext_int; // Old PLIC has a deferred XIRR pending } fields; } int_dword; // Whenever any fields in this Dword are set then PLIC will defer the // processing of external interrupts. Note that PLIC will store the // XIRR directly into the xXirrValue field so that another XIRR will // not be presented until this one clears. The layout of the low // 4-bytes of this Dword is upto SLIC - PLIC just checks whether the // entire Dword is zero or not. A non-zero value in the low order // 2-bytes will result in SLIC being granted the highest thread // priority upon return. A 0 will return to SLIC as medium priority. u64 plic_defer_ints_area; // Entire Dword // Used to pass the real SRR0/1 from PLIC to SLIC as well as to // pass the target SRR0/1 from SLIC to PLIC on a SetAsrAndRfid. u64 saved_srr0; // Saved SRR0 x10-x17 u64 saved_srr1; // Saved SRR1 x18-x1F // Used to pass parms from the OS to PLIC for SetAsrAndRfid u64 saved_gpr3; // Saved GPR3 x20-x27 u64 saved_gpr4; // Saved GPR4 x28-x2F union { u64 saved_gpr5; /* Saved GPR5 x30-x37 */ struct { u8 cede_latency_hint; /* x30 */ u8 reserved[7]; /* x31-x36 */ } fields; } gpr5_dword; u8 dtl_enable_mask; // Dispatch Trace Log mask x38-x38 u8 donate_dedicated_cpu; // Donate dedicated CPU cycles x39-x39 u8 fpregs_in_use; // FP regs in use x3A-x3A u8 pmcregs_in_use; // PMC regs in use x3B-x3B volatile u32 saved_decr; // Saved Decr Value x3C-x3F volatile u64 emulated_time_base;// Emulated TB for this thread x40-x47 volatile u64 cur_plic_latency; // Unaccounted PLIC latency x48-x4F u64 tot_plic_latency; // Accumulated PLIC latency x50-x57 u64 wait_state_cycles; // Wait cycles for this proc x58-x5F u64 end_of_quantum; // TB at end of quantum x60-x67 u64 pdc_saved_sprg1; // Saved SPRG1 for PMC int x68-x6F u64 pdc_saved_srr0; // Saved SRR0 for PMC int x70-x77 volatile u32 virtual_decr; // Virtual DECR for shared procsx78-x7B u16 slb_count; // # of SLBs to maintain x7C-x7D u8 idle; // Indicate OS is idle x7E u8 vmxregs_in_use; // VMX registers in use x7F //============================================================================= // CACHE_LINE_3 0x0100 - 0x017F: This line is shared with other processors //============================================================================= // This is the yield_count. An "odd" value (low bit on) means that // the processor is yielded (either because of an OS yield or a PLIC // preempt). An even value implies that the processor is currently // executing. // NOTE: This value will ALWAYS be zero for dedicated processors and // will NEVER be zero for shared processors (ie, initialized to a 1). volatile u32 yield_count; // PLIC increments each dispatchx00-x03 volatile u32 dispersion_count; // dispatch changed phys cpu x04-x07 volatile u64 cmo_faults; // CMO page fault count x08-x0F volatile u64 cmo_fault_time; // CMO page fault time x10-x17 u8 reserved7[104]; // Reserved x18-x7F //============================================================================= // CACHE_LINE_4-5 0x0180 - 0x027F Contains PMC interrupt data //============================================================================= u32 page_ins; // CMO Hint - # page ins by OS x00-x03 u8 reserved8[148]; // Reserved x04-x97 volatile u64 dtl_idx; // Dispatch Trace Log head idx x98-x9F u8 reserved9[96]; // Reserved xA0-xFF } __attribute__((__aligned__(0x400))); extern struct lppaca lppaca[]; #define lppaca_of(cpu) (*paca[cpu].lppaca_ptr) /* * SLB shadow buffer structure as defined in the PAPR. The save_area * contains adjacent ESID and VSID pairs for each shadowed SLB. The * ESID is stored in the lower 64bits, then the VSID. */ struct slb_shadow { u32 persistent; // Number of persistent SLBs x00-x03 u32 buffer_length; // Total shadow buffer length x04-x07 u64 reserved; // Alignment x08-x0f struct { u64 esid; u64 vsid; } save_area[SLB_NUM_BOLTED]; // x10-x40 } ____cacheline_aligned; extern struct slb_shadow slb_shadow[]; /* * Layout of entries in the hypervisor's dispatch trace log buffer. */ struct dtl_entry { u8 dispatch_reason; u8 preempt_reason; u16 processor_id; u32 enqueue_to_dispatch_time; u32 ready_to_enqueue_time; u32 waiting_to_ready_time; u64 timebase; u64 fault_addr; u64 srr0; u64 srr1; }; #define DISPATCH_LOG_BYTES 4096 /* bytes per cpu */ #define N_DISPATCH_LOG (DISPATCH_LOG_BYTES / sizeof(struct dtl_entry)) /* * When CONFIG_VIRT_CPU_ACCOUNTING = y, the cpu accounting code controls * reading from the dispatch trace log. If other code wants to consume * DTL entries, it can set this pointer to a function that will get * called once for each DTL entry that gets processed. */ extern void (*dtl_consumer)(struct dtl_entry *entry, u64 index); #endif /* CONFIG_PPC_BOOK3S */ #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_LPPACA_H */