#ifdef __KERNEL__ #ifndef _ASM_POWERPC_IRQ_H #define _ASM_POWERPC_IRQ_H /* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include /* Define a way to iterate across irqs. */ #define for_each_irq(i) \ for ((i) = 0; (i) < NR_IRQS; ++(i)) extern atomic_t ppc_n_lost_interrupts; /* This number is used when no interrupt has been assigned */ #define NO_IRQ (0) /* This is a special irq number to return from get_irq() to tell that * no interrupt happened _and_ ignore it (don't count it as bad). Some * platforms like iSeries rely on that. */ #define NO_IRQ_IGNORE ((unsigned int)-1) /* Total number of virq in the platform */ #define NR_IRQS CONFIG_NR_IRQS /* Number of irqs reserved for the legacy controller */ #define NUM_ISA_INTERRUPTS 16 /* Same thing, used by the generic IRQ code */ #define NR_IRQS_LEGACY NUM_ISA_INTERRUPTS /* This type is the placeholder for a hardware interrupt number. It has to * be big enough to enclose whatever representation is used by a given * platform. */ typedef unsigned long irq_hw_number_t; /* Interrupt controller "host" data structure. This could be defined as a * irq domain controller. That is, it handles the mapping between hardware * and virtual interrupt numbers for a given interrupt domain. The host * structure is generally created by the PIC code for a given PIC instance * (though a host can cover more than one PIC if they have a flat number * model). It's the host callbacks that are responsible for setting the * irq_chip on a given irq_desc after it's been mapped. * * The host code and data structures are fairly agnostic to the fact that * we use an open firmware device-tree. We do have references to struct * device_node in two places: in irq_find_host() to find the host matching * a given interrupt controller node, and of course as an argument to its * counterpart host->ops->match() callback. However, those are treated as * generic pointers by the core and the fact that it's actually a device-node * pointer is purely a convention between callers and implementation. This * code could thus be used on other architectures by replacing those two * by some sort of arch-specific void * "token" used to identify interrupt * controllers. */ struct irq_host; struct radix_tree_root; /* Functions below are provided by the host and called whenever a new mapping * is created or an old mapping is disposed. The host can then proceed to * whatever internal data structures management is required. It also needs * to setup the irq_desc when returning from map(). */ struct irq_host_ops { /* Match an interrupt controller device node to a host, returns * 1 on a match */ int (*match)(struct irq_host *h, struct device_node *node); /* Create or update a mapping between a virtual irq number and a hw * irq number. This is called only once for a given mapping. */ int (*map)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw); /* Dispose of such a mapping */ void (*unmap)(struct irq_host *h, unsigned int virq); /* Update of such a mapping */ void (*remap)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw); /* Translate device-tree interrupt specifier from raw format coming * from the firmware to a irq_hw_number_t (interrupt line number) and * type (sense) that can be passed to set_irq_type(). In the absence * of this callback, irq_create_of_mapping() and irq_of_parse_and_map() * will return the hw number in the first cell and IRQ_TYPE_NONE for * the type (which amount to keeping whatever default value the * interrupt controller has for that line) */ int (*xlate)(struct irq_host *h, struct device_node *ctrler, const u32 *intspec, unsigned int intsize, irq_hw_number_t *out_hwirq, unsigned int *out_type); }; struct irq_host { struct list_head link; /* type of reverse mapping technique */ unsigned int revmap_type; #define IRQ_HOST_MAP_LEGACY 0 /* legacy 8259, gets irqs 1..15 */ #define IRQ_HOST_MAP_NOMAP 1 /* no fast reverse mapping */ #define IRQ_HOST_MAP_LINEAR 2 /* linear map of interrupts */ #define IRQ_HOST_MAP_TREE 3 /* radix tree */ union { struct { unsigned int size; unsigned int *revmap; } linear; struct radix_tree_root tree; } revmap_data; struct irq_host_ops *ops; void *host_data; irq_hw_number_t inval_irq; /* Optional device node pointer */ struct device_node *of_node; }; /* The main irq map itself is an array of NR_IRQ entries containing the * associate host and irq number. An entry with a host of NULL is free. * An entry can be allocated if it's free, the allocator always then sets * hwirq first to the host's invalid irq number and then fills ops. */ struct irq_map_entry { irq_hw_number_t hwirq; struct irq_host *host; }; extern struct irq_map_entry irq_map[NR_IRQS]; extern irq_hw_number_t virq_to_hw(unsigned int virq); /** * irq_alloc_host - Allocate a new irq_host data structure * @of_node: optional device-tree node of the interrupt controller * @revmap_type: type of reverse mapping to use * @revmap_arg: for IRQ_HOST_MAP_LINEAR linear only: size of the map * @ops: map/unmap host callbacks * @inval_irq: provide a hw number in that host space that is always invalid * * Allocates and initialize and irq_host structure. Note that in the case of * IRQ_HOST_MAP_LEGACY, the map() callback will be called before this returns * for all legacy interrupts except 0 (which is always the invalid irq for * a legacy controller). For a IRQ_HOST_MAP_LINEAR, the map is allocated by * this call as well. For a IRQ_HOST_MAP_TREE, the radix tree will be allocated * later during boot automatically (the reverse mapping will use the slow path * until that happens). */ extern struct irq_host *irq_alloc_host(struct device_node *of_node, unsigned int revmap_type, unsigned int revmap_arg, struct irq_host_ops *ops, irq_hw_number_t inval_irq); /** * irq_find_host - Locates a host for a given device node * @node: device-tree node of the interrupt controller */ extern struct irq_host *irq_find_host(struct device_node *node); /** * irq_set_default_host - Set a "default" host * @host: default host pointer * * For convenience, it's possible to set a "default" host that will be used * whenever NULL is passed to irq_create_mapping(). It makes life easier for * platforms that want to manipulate a few hard coded interrupt numbers that * aren't properly represented in the device-tree. */ extern void irq_set_default_host(struct irq_host *host); /** * irq_set_virq_count - Set the maximum number of virt irqs * @count: number of linux virtual irqs, capped with NR_IRQS * * This is mainly for use by platforms like iSeries who want to program * the virtual irq number in the controller to avoid the reverse mapping */ extern void irq_set_virq_count(unsigned int count); /** * irq_create_mapping - Map a hardware interrupt into linux virq space * @host: host owning this hardware interrupt or NULL for default host * @hwirq: hardware irq number in that host space * * Only one mapping per hardware interrupt is permitted. Returns a linux * virq number. * If the sense/trigger is to be specified, set_irq_type() should be called * on the number returned from that call. */ extern unsigned int irq_create_mapping(struct irq_host *host, irq_hw_number_t hwirq); /** * irq_dispose_mapping - Unmap an interrupt * @virq: linux virq number of the interrupt to unmap */ extern void irq_dispose_mapping(unsigned int virq); /** * irq_find_mapping - Find a linux virq from an hw irq number. * @host: host owning this hardware interrupt * @hwirq: hardware irq number in that host space * * This is a slow path, for use by generic code. It's expected that an * irq controller implementation directly calls the appropriate low level * mapping function. */ extern unsigned int irq_find_mapping(struct irq_host *host, irq_hw_number_t hwirq); /** * irq_create_direct_mapping - Allocate a virq for direct mapping * @host: host to allocate the virq for or NULL for default host * * This routine is used for irq controllers which can choose the hardware * interrupt numbers they generate. In such a case it's simplest to use * the linux virq as the hardware interrupt number. */ extern unsigned int irq_create_direct_mapping(struct irq_host *host); /** * irq_radix_revmap_insert - Insert a hw irq to linux virq number mapping. * @host: host owning this hardware interrupt * @virq: linux irq number * @hwirq: hardware irq number in that host space * * This is for use by irq controllers that use a radix tree reverse * mapping for fast lookup. */ extern void irq_radix_revmap_insert(struct irq_host *host, unsigned int virq, irq_hw_number_t hwirq); /** * irq_radix_revmap_lookup - Find a linux virq from a hw irq number. * @host: host owning this hardware interrupt * @hwirq: hardware irq number in that host space * * This is a fast path, for use by irq controller code that uses radix tree * revmaps */ extern unsigned int irq_radix_revmap_lookup(struct irq_host *host, irq_hw_number_t hwirq); /** * irq_linear_revmap - Find a linux virq from a hw irq number. * @host: host owning this hardware interrupt * @hwirq: hardware irq number in that host space * * This is a fast path, for use by irq controller code that uses linear * revmaps. It does fallback to the slow path if the revmap doesn't exist * yet and will create the revmap entry with appropriate locking */ extern unsigned int irq_linear_revmap(struct irq_host *host, irq_hw_number_t hwirq); /** * irq_alloc_virt - Allocate virtual irq numbers * @host: host owning these new virtual irqs * @count: number of consecutive numbers to allocate * @hint: pass a hint number, the allocator will try to use a 1:1 mapping * * This is a low level function that is used internally by irq_create_mapping() * and that can be used by some irq controllers implementations for things * like allocating ranges of numbers for MSIs. The revmaps are left untouched. */ extern unsigned int irq_alloc_virt(struct irq_host *host, unsigned int count, unsigned int hint); /** * irq_free_virt - Free virtual irq numbers * @virq: virtual irq number of the first interrupt to free * @count: number of interrupts to free * * This function is the opposite of irq_alloc_virt. It will not clear reverse * maps, this should be done previously by unmap'ing the interrupt. In fact, * all interrupts covered by the range being freed should have been unmapped * prior to calling this. */ extern void irq_free_virt(unsigned int virq, unsigned int count); /** * irq_early_init - Init irq remapping subsystem */ extern void irq_early_init(void); static __inline__ int irq_canonicalize(int irq) { return irq; } extern int distribute_irqs; struct irqaction; struct pt_regs; #define __ARCH_HAS_DO_SOFTIRQ #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) /* * Per-cpu stacks for handling critical, debug and machine check * level interrupts. */ extern struct thread_info *critirq_ctx[NR_CPUS]; extern struct thread_info *dbgirq_ctx[NR_CPUS]; extern struct thread_info *mcheckirq_ctx[NR_CPUS]; extern void exc_lvl_ctx_init(void); #else #define exc_lvl_ctx_init() #endif /* * Per-cpu stacks for handling hard and soft interrupts. */ extern struct thread_info *hardirq_ctx[NR_CPUS]; extern struct thread_info *softirq_ctx[NR_CPUS]; extern void irq_ctx_init(void); extern void call_do_softirq(struct thread_info *tp); extern int call_handle_irq(int irq, void *p1, struct thread_info *tp, void *func); extern void do_IRQ(struct pt_regs *regs); #endif /* _ASM_IRQ_H */ #endif /* __KERNEL__ */