/* multi_arith.h: multi-precision integer arithmetic functions, needed to do extended-precision floating point. (c) 1998 David Huggins-Daines. Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c) David Mosberger-Tang. You may copy, modify, and redistribute this file under the terms of the GNU General Public License, version 2, or any later version, at your convenience. */ /* Note: These are not general multi-precision math routines. Rather, they implement the subset of integer arithmetic that we need in order to multiply, divide, and normalize 128-bit unsigned mantissae. */ #ifndef MULTI_ARITH_H #define MULTI_ARITH_H static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt) { reg->exp += cnt; switch (cnt) { case 0 ... 8: reg->lowmant = reg->mant.m32[1] << (8 - cnt); reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | (reg->mant.m32[0] << (32 - cnt)); reg->mant.m32[0] = reg->mant.m32[0] >> cnt; break; case 9 ... 32: reg->lowmant = reg->mant.m32[1] >> (cnt - 8); if (reg->mant.m32[1] << (40 - cnt)) reg->lowmant |= 1; reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | (reg->mant.m32[0] << (32 - cnt)); reg->mant.m32[0] = reg->mant.m32[0] >> cnt; break; case 33 ... 39: asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant) : "m" (reg->mant.m32[0]), "d" (64 - cnt)); if (reg->mant.m32[1] << (40 - cnt)) reg->lowmant |= 1; reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); reg->mant.m32[0] = 0; break; case 40 ... 71: reg->lowmant = reg->mant.m32[0] >> (cnt - 40); if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1]) reg->lowmant |= 1; reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); reg->mant.m32[0] = 0; break; default: reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1]; reg->mant.m32[0] = 0; reg->mant.m32[1] = 0; break; } } static inline int fp_overnormalize(struct fp_ext *reg) { int shift; if (reg->mant.m32[0]) { asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0])); reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift)); reg->mant.m32[1] = (reg->mant.m32[1] << shift); } else { asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1])); reg->mant.m32[0] = (reg->mant.m32[1] << shift); reg->mant.m32[1] = 0; shift += 32; } return shift; } static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src) { int carry; /* we assume here, gcc only insert move and a clr instr */ asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant) : "g,d" (src->lowmant), "0,0" (dest->lowmant)); asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1]) : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1])); asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0]) : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0])); asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0)); return carry; } static inline int fp_addcarry(struct fp_ext *reg) { if (++reg->exp == 0x7fff) { if (reg->mant.m64) fp_set_sr(FPSR_EXC_INEX2); reg->mant.m64 = 0; fp_set_sr(FPSR_EXC_OVFL); return 0; } reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0); reg->mant.m32[1] = (reg->mant.m32[1] >> 1) | (reg->mant.m32[0] << 31); reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000; return 1; } static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, struct fp_ext *src2) { /* we assume here, gcc only insert move and a clr instr */ asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant) : "g,d" (src2->lowmant), "0,0" (src1->lowmant)); asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1]) : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1])); asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0]) : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0])); } #define fp_mul64(desth, destl, src1, src2) ({ \ asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \ : "dm" (src1), "0" (src2)); \ }) #define fp_div64(quot, rem, srch, srcl, div) \ asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \ : "dm" (div), "1" (srch), "0" (srcl)) #define fp_add64(dest1, dest2, src1, src2) ({ \ asm ("add.l %1,%0" : "=d,dm" (dest2) \ : "dm,d" (src2), "0,0" (dest2)); \ asm ("addx.l %1,%0" : "=d" (dest1) \ : "d" (src1), "0" (dest1)); \ }) #define fp_addx96(dest, src) ({ \ /* we assume here, gcc only insert move and a clr instr */ \ asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \ : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \ asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \ : "d" (temp.m32[0]), "0" (dest->m32[1])); \ asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \ : "d" (0), "0" (dest->m32[0])); \ }) #define fp_sub64(dest, src) ({ \ asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \ : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \ asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \ : "d" (src.m32[0]), "0" (dest.m32[0])); \ }) #define fp_sub96c(dest, srch, srcm, srcl) ({ \ char carry; \ asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \ : "dm,d" (srcl), "0,0" (dest.m32[2])); \ asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \ : "d" (srcm), "0" (dest.m32[1])); \ asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \ : "d" (srch), "1" (dest.m32[0])); \ carry; \ }) static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, struct fp_ext *src2) { union fp_mant64 temp; fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]); fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]); fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]); fp_addx96(dest, temp); fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]); fp_addx96(dest, temp); } static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, struct fp_ext *div) { union fp_mant128 tmp; union fp_mant64 tmp64; unsigned long *mantp = dest->m32; unsigned long fix, rem, first, dummy; int i; /* the algorithm below requires dest to be smaller than div, but both have the high bit set */ if (src->mant.m64 >= div->mant.m64) { fp_sub64(src->mant, div->mant); *mantp = 1; } else *mantp = 0; mantp++; /* basic idea behind this algorithm: we can't divide two 64bit numbers (AB/CD) directly, but we can calculate AB/C0, but this means this quotient is off by C0/CD, so we have to multiply the first result to fix the result, after that we have nearly the correct result and only a few corrections are needed. */ /* C0/CD can be precalculated, but it's an 64bit division again, but we can make it a bit easier, by dividing first through C so we get 10/1D and now only a single shift and the value fits into 32bit. */ fix = 0x80000000; dummy = div->mant.m32[1] / div->mant.m32[0] + 1; dummy = (dummy >> 1) | fix; fp_div64(fix, dummy, fix, 0, dummy); fix--; for (i = 0; i < 3; i++, mantp++) { if (src->mant.m32[0] == div->mant.m32[0]) { fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]); fp_mul64(*mantp, dummy, first, fix); *mantp += fix; } else { fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]); fp_mul64(*mantp, dummy, first, fix); } fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp); fp_add64(tmp.m32[0], tmp.m32[1], 0, rem); tmp.m32[2] = 0; fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]); fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]); src->mant.m32[0] = tmp.m32[1]; src->mant.m32[1] = tmp.m32[2]; while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) { src->mant.m32[0] = tmp.m32[1]; src->mant.m32[1] = tmp.m32[2]; *mantp += 1; } } } static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, int shift) { unsigned long tmp; switch (shift) { case 0: dest->mant.m64 = src->m64[0]; dest->lowmant = src->m32[2] >> 24; if (src->m32[3] || (src->m32[2] << 8)) dest->lowmant |= 1; break; case 1: asm volatile ("lsl.l #1,%0" : "=d" (tmp) : "0" (src->m32[2])); asm volatile ("roxl.l #1,%0" : "=d" (dest->mant.m32[1]) : "0" (src->m32[1])); asm volatile ("roxl.l #1,%0" : "=d" (dest->mant.m32[0]) : "0" (src->m32[0])); dest->lowmant = tmp >> 24; if (src->m32[3] || (tmp << 8)) dest->lowmant |= 1; break; case 31: asm volatile ("lsr.l #1,%1; roxr.l #1,%0" : "=d" (dest->mant.m32[0]) : "d" (src->m32[0]), "0" (src->m32[1])); asm volatile ("roxr.l #1,%0" : "=d" (dest->mant.m32[1]) : "0" (src->m32[2])); asm volatile ("roxr.l #1,%0" : "=d" (tmp) : "0" (src->m32[3])); dest->lowmant = tmp >> 24; if (src->m32[3] << 7) dest->lowmant |= 1; break; case 32: dest->mant.m32[0] = src->m32[1]; dest->mant.m32[1] = src->m32[2]; dest->lowmant = src->m32[3] >> 24; if (src->m32[3] << 8) dest->lowmant |= 1; break; } } #endif /* MULTI_ARITH_H */