/* * Copyright (C) 2004-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef __ASM_AVR32_BITOPS_H #define __ASM_AVR32_BITOPS_H #ifndef _LINUX_BITOPS_H #error only can be included directly #endif #include #include /* * clear_bit() doesn't provide any barrier for the compiler */ #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() /* * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(int nr, volatile void * addr) { unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; unsigned long tmp; if (__builtin_constant_p(nr)) { asm volatile( "1: ssrf 5\n" " ld.w %0, %2\n" " sbr %0, %3\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p) : "m"(*p), "i"(nr) : "cc"); } else { unsigned long mask = 1UL << (nr % BITS_PER_LONG); asm volatile( "1: ssrf 5\n" " ld.w %0, %2\n" " or %0, %3\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p) : "m"(*p), "r"(mask) : "cc"); } } /* * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ static inline void clear_bit(int nr, volatile void * addr) { unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; unsigned long tmp; if (__builtin_constant_p(nr)) { asm volatile( "1: ssrf 5\n" " ld.w %0, %2\n" " cbr %0, %3\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p) : "m"(*p), "i"(nr) : "cc"); } else { unsigned long mask = 1UL << (nr % BITS_PER_LONG); asm volatile( "1: ssrf 5\n" " ld.w %0, %2\n" " andn %0, %3\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p) : "m"(*p), "r"(mask) : "cc"); } } /* * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(int nr, volatile void * addr) { unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; unsigned long mask = 1UL << (nr % BITS_PER_LONG); unsigned long tmp; asm volatile( "1: ssrf 5\n" " ld.w %0, %2\n" " eor %0, %3\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p) : "m"(*p), "r"(mask) : "cc"); } /* * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_set_bit(int nr, volatile void * addr) { unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; unsigned long mask = 1UL << (nr % BITS_PER_LONG); unsigned long tmp, old; if (__builtin_constant_p(nr)) { asm volatile( "1: ssrf 5\n" " ld.w %0, %3\n" " mov %2, %0\n" " sbr %0, %4\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p), "=&r"(old) : "m"(*p), "i"(nr) : "memory", "cc"); } else { asm volatile( "1: ssrf 5\n" " ld.w %2, %3\n" " or %0, %2, %4\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p), "=&r"(old) : "m"(*p), "r"(mask) : "memory", "cc"); } return (old & mask) != 0; } /* * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_clear_bit(int nr, volatile void * addr) { unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; unsigned long mask = 1UL << (nr % BITS_PER_LONG); unsigned long tmp, old; if (__builtin_constant_p(nr)) { asm volatile( "1: ssrf 5\n" " ld.w %0, %3\n" " mov %2, %0\n" " cbr %0, %4\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p), "=&r"(old) : "m"(*p), "i"(nr) : "memory", "cc"); } else { asm volatile( "1: ssrf 5\n" " ld.w %0, %3\n" " mov %2, %0\n" " andn %0, %4\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p), "=&r"(old) : "m"(*p), "r"(mask) : "memory", "cc"); } return (old & mask) != 0; } /* * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_change_bit(int nr, volatile void * addr) { unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; unsigned long mask = 1UL << (nr % BITS_PER_LONG); unsigned long tmp, old; asm volatile( "1: ssrf 5\n" " ld.w %2, %3\n" " eor %0, %2, %4\n" " stcond %1, %0\n" " brne 1b" : "=&r"(tmp), "=o"(*p), "=&r"(old) : "m"(*p), "r"(mask) : "memory", "cc"); return (old & mask) != 0; } #include /* Find First bit Set */ static inline unsigned long __ffs(unsigned long word) { unsigned long result; asm("brev %1\n\t" "clz %0,%1" : "=r"(result), "=&r"(word) : "1"(word)); return result; } /* Find First Zero */ static inline unsigned long ffz(unsigned long word) { return __ffs(~word); } /* Find Last bit Set */ static inline int fls(unsigned long word) { unsigned long result; asm("clz %0,%1" : "=r"(result) : "r"(word)); return 32 - result; } static inline int __fls(unsigned long word) { return fls(word) - 1; } unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size); unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset); unsigned long find_first_bit(const unsigned long *addr, unsigned long size); unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset); /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). * * The difference is that bit numbering starts at 1, and if no bit is set, * the function returns 0. */ static inline int ffs(unsigned long word) { if(word == 0) return 0; return __ffs(word) + 1; } #include #include #include #include #include #include #include #endif /* __ASM_AVR32_BITOPS_H */