/* * Cache maintenance * * Copyright (C) 2001 Deep Blue Solutions Ltd. * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "proc-macros.S" /* * __flush_dcache_all() * * Flush the whole D-cache. * * Corrupted registers: x0-x7, x9-x11 */ ENTRY(__flush_dcache_all) dsb sy // ensure ordering with previous memory accesses mrs x0, clidr_el1 // read clidr and x3, x0, #0x7000000 // extract loc from clidr lsr x3, x3, #23 // left align loc bit field cbz x3, finished // if loc is 0, then no need to clean mov x10, #0 // start clean at cache level 0 loop1: add x2, x10, x10, lsr #1 // work out 3x current cache level lsr x1, x0, x2 // extract cache type bits from clidr and x1, x1, #7 // mask of the bits for current cache only cmp x1, #2 // see what cache we have at this level b.lt skip // skip if no cache, or just i-cache save_and_disable_irqs x9 // make CSSELR and CCSIDR access atomic msr csselr_el1, x10 // select current cache level in csselr isb // isb to sych the new cssr&csidr mrs x1, ccsidr_el1 // read the new ccsidr restore_irqs x9 and x2, x1, #7 // extract the length of the cache lines add x2, x2, #4 // add 4 (line length offset) mov x4, #0x3ff and x4, x4, x1, lsr #3 // find maximum number on the way size clz w5, w4 // find bit position of way size increment mov x7, #0x7fff and x7, x7, x1, lsr #13 // extract max number of the index size loop2: mov x9, x4 // create working copy of max way size loop3: lsl x6, x9, x5 orr x11, x10, x6 // factor way and cache number into x11 lsl x6, x7, x2 orr x11, x11, x6 // factor index number into x11 dc cisw, x11 // clean & invalidate by set/way subs x9, x9, #1 // decrement the way b.ge loop3 subs x7, x7, #1 // decrement the index b.ge loop2 skip: add x10, x10, #2 // increment cache number cmp x3, x10 b.gt loop1 finished: mov x10, #0 // swith back to cache level 0 msr csselr_el1, x10 // select current cache level in csselr dsb sy isb ret ENDPROC(__flush_dcache_all) /* * flush_cache_all() * * Flush the entire cache system. The data cache flush is now achieved * using atomic clean / invalidates working outwards from L1 cache. This * is done using Set/Way based cache maintainance instructions. The * instruction cache can still be invalidated back to the point of * unification in a single instruction. */ ENTRY(flush_cache_all) mov x12, lr bl __flush_dcache_all mov x0, #0 ic ialluis // I+BTB cache invalidate ret x12 ENDPROC(flush_cache_all) /* * flush_icache_range(start,end) * * Ensure that the I and D caches are coherent within specified region. * This is typically used when code has been written to a memory region, * and will be executed. * * - start - virtual start address of region * - end - virtual end address of region */ ENTRY(flush_icache_range) /* FALLTHROUGH */ /* * __flush_cache_user_range(start,end) * * Ensure that the I and D caches are coherent within specified region. * This is typically used when code has been written to a memory region, * and will be executed. * * - start - virtual start address of region * - end - virtual end address of region */ ENTRY(__flush_cache_user_range) dcache_line_size x2, x3 sub x3, x2, #1 bic x4, x0, x3 1: USER(9f, dc cvau, x4 ) // clean D line to PoU add x4, x4, x2 cmp x4, x1 b.lo 1b dsb sy icache_line_size x2, x3 sub x3, x2, #1 bic x4, x0, x3 1: USER(9f, ic ivau, x4 ) // invalidate I line PoU add x4, x4, x2 cmp x4, x1 b.lo 1b 9: // ignore any faulting cache operation dsb sy isb ret ENDPROC(flush_icache_range) ENDPROC(__flush_cache_user_range) /* * __flush_kern_dcache_page(kaddr) * * Ensure that the data held in the page kaddr is written back to the * page in question. * * - kaddr - kernel address * - size - size in question */ ENTRY(__flush_dcache_area) dcache_line_size x2, x3 add x1, x0, x1 sub x3, x2, #1 bic x0, x0, x3 1: dc civac, x0 // clean & invalidate D line / unified line add x0, x0, x2 cmp x0, x1 b.lo 1b dsb sy ret ENDPROC(__flush_dcache_area) /* * __dma_inv_range(start, end) * - start - virtual start address of region * - end - virtual end address of region */ __dma_inv_range: dcache_line_size x2, x3 sub x3, x2, #1 bic x0, x0, x3 bic x1, x1, x3 1: dc ivac, x0 // invalidate D / U line add x0, x0, x2 cmp x0, x1 b.lo 1b dsb sy ret ENDPROC(__dma_inv_range) /* * __dma_clean_range(start, end) * - start - virtual start address of region * - end - virtual end address of region */ __dma_clean_range: dcache_line_size x2, x3 sub x3, x2, #1 bic x0, x0, x3 1: dc cvac, x0 // clean D / U line add x0, x0, x2 cmp x0, x1 b.lo 1b dsb sy ret ENDPROC(__dma_clean_range) /* * __dma_flush_range(start, end) * - start - virtual start address of region * - end - virtual end address of region */ ENTRY(__dma_flush_range) dcache_line_size x2, x3 sub x3, x2, #1 bic x0, x0, x3 1: dc civac, x0 // clean & invalidate D / U line add x0, x0, x2 cmp x0, x1 b.lo 1b dsb sy ret ENDPROC(__dma_flush_range) /* * __dma_map_area(start, size, dir) * - start - kernel virtual start address * - size - size of region * - dir - DMA direction */ ENTRY(__dma_map_area) add x1, x1, x0 cmp w2, #DMA_FROM_DEVICE b.eq __dma_inv_range b __dma_clean_range ENDPROC(__dma_map_area) /* * __dma_unmap_area(start, size, dir) * - start - kernel virtual start address * - size - size of region * - dir - DMA direction */ ENTRY(__dma_unmap_area) add x1, x1, x0 cmp w2, #DMA_TO_DEVICE b.ne __dma_inv_range ret ENDPROC(__dma_unmap_area)