aboutsummaryrefslogtreecommitdiff
path: root/arch/x86_64/kernel/kprobes.c
AgeCommit message (Collapse)Author
2005-09-30[PATCH] utilization of kprobe_mutex is incorrect on x86_64Zhang, Yanmin
The up()/down() orders are incorrect in arch/x86_64/kprobes.c file. kprobe_mutext is used to protect the free kprobe instruction slot list. arch_prepare_kprobe applies for a slot from the free list, and arch_remove_kprobe returns a slot to the free list. The incorrect up()/down() orders to operate on kprobe_mutex fail to protect the free list. If 2 threads try to get/return kprobe instruction slot at the same time, the free slot list might be broken, or a free slot might be applied by 2 threads. Signed-off-by: Zhang Yanmin <Yanmin.zhang@intel.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07[PATCH] kprobes: fix bug when probed on task and isr functionsKeshavamurthy Anil S
This patch fixes a race condition where in system used to hang or sometime crash within minutes when kprobes are inserted on ISR routine and a task routine. The fix has been stress tested on i386, ia64, pp64 and on x86_64. To reproduce the problem insert kprobes on schedule() and do_IRQ() functions and you should see hang or system crash. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Acked-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07[PATCH] kprobes: fix handling of simultaneous probe hit/unregisterJim Keniston
This patch fixes a bug in kprobes's handling of a corner case on i386 and x86_64. On an SMP system, if one CPU unregisters a kprobe just after another CPU hits that probepoint, kprobe_handler() on the latter CPU sees that the kprobe has been unregistered, and attempts to let the CPU continue as if the probepoint hadn't been hit. The bug is that on i386 and x86_64, we were neglecting to set the IP back to the beginning of the probed instruction. This could cause an oops or crash. This bug doesn't exist on ppc64 and ia64, where a breakpoint instruction leaves the IP pointing to the beginning of the instruction. I don't know about sparc64. (Dave, could you please advise?) This fix has been tested on i386 and x86_64 SMP systems. To reproduce the problem, set one CPU to work registering and unregistering a kprobe repeatedly, and another CPU pounding the probepoint in a tight loop. Acked-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Jim Keniston <jkenisto@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07[PATCH] kprobes: prevent possible race conditions x86_64 changesPrasanna S Panchamukhi
This patch contains the x86_64 architecture specific changes to prevent the possible race conditions. Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-05[PATCH] kprobes: fix namespace problem and sparc64 buildRusty Lynch
The following renames arch_init, a kprobes function for performing any architecture specific initialization, to arch_init_kprobes in order to cleanup the namespace. Also, this patch adds arch_init_kprobes to sparc64 to fix the sparc64 kprobes build from the last return probe patch. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27[PATCH] Return probe redesign: x86_64 specific changesRusty Lynch
The following patch contains the x86_64 specific changes for the new return probe design. Changes include: * Removing the architecture specific functions for querying a return probe instance off a stack address * Complete rework onf arch_prepare_kretprobe() and trampoline_probe_handler() * Removing trampoline_post_handler() * Adding arch_init() so that now we handle registering the return probe trampoline instead of kernel/kprobes.c doing it NOTE: Note that with this new design, the dependency on calculating a pointer to the task off the stack pointer no longer exist (resolving the problem of interruption stacks as pointed out in the original feedback to this port.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27[PATCH] kprobes: fix single-step out of line - take2Ananth N Mavinakayanahalli
Now that PPC64 has no-execute support, here is a second try to fix the single step out of line during kprobe execution. Kprobes on x86_64 already solved this problem by allocating an executable page and using it as the scratch area for stepping out of line. Reuse that. Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23[PATCH] kprobes: Temporary disarming of reentrant probe for x86_64Prasanna S Panchamukhi
This patch includes x86_64 architecture specific changes to support temporary disarming on reentrancy of probes. Signed-of-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23[PATCH] Move kprobe [dis]arming into arch specific codeRusty Lynch
The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23[PATCH] x86_64 specific function return probesRusty Lynch
The following patch adds the x86_64 architecture specific implementation for function return probes. Function return probes is a mechanism built on top of kprobes that allows a caller to register a handler to be called when a given function exits. For example, to instrument the return path of sys_mkdir: static int sys_mkdir_exit(struct kretprobe_instance *i, struct pt_regs *regs) { printk("sys_mkdir exited\n"); return 0; } static struct kretprobe return_probe = { .handler = sys_mkdir_exit, }; <inside setup function> return_probe.kp.addr = (kprobe_opcode_t *) kallsyms_lookup_name("sys_mkdir"); if (register_kretprobe(&return_probe)) { printk(KERN_DEBUG "Unable to register return probe!\n"); /* do error path */ } <inside cleanup function> unregister_kretprobe(&return_probe); The way this works is that: * At system initialization time, kernel/kprobes.c installs a kprobe on a function called kretprobe_trampoline() that is implemented in the arch/x86_64/kernel/kprobes.c (More on this later) * When a return probe is registered using register_kretprobe(), kernel/kprobes.c will install a kprobe on the first instruction of the targeted function with the pre handler set to arch_prepare_kretprobe() which is implemented in arch/x86_64/kernel/kprobes.c. * arch_prepare_kretprobe() will prepare a kretprobe instance that stores: - nodes for hanging this instance in an empty or free list - a pointer to the return probe - the original return address - a pointer to the stack address With all this stowed away, arch_prepare_kretprobe() then sets the return address for the targeted function to a special trampoline function called kretprobe_trampoline() implemented in arch/x86_64/kernel/kprobes.c * The kprobe completes as normal, with control passing back to the target function that executes as normal, and eventually returns to our trampoline function. * Since a kprobe was installed on kretprobe_trampoline() during system initialization, control passes back to kprobes via the architecture specific function trampoline_probe_handler() which will lookup the instance in an hlist maintained by kernel/kprobes.c, and then call the handler function. * When trampoline_probe_handler() is done, the kprobes infrastructure single steps the original instruction (in this case just a top), and then calls trampoline_post_handler(). trampoline_post_handler() then looks up the instance again, puts the instance back on the free list, and then makes a long jump back to the original return instruction. So to recap, to instrument the exit path of a function this implementation will cause four interruptions: - A breakpoint at the very beginning of the function allowing us to switch out the return address - A single step interruption to execute the original instruction that we replaced with the break instruction (normal kprobe flow) - A breakpoint in the trampoline function where our instrumented function returned to - A single step interruption to execute the original instruction that we replaced with the break instruction (normal kprobe flow) Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] Kprobes: Incorrect handling of probes on ret/lret instructionPrasanna S Panchamukhi
Kprobes could not handle the insertion of a probe on the ret/lret instruction and used to oops after single stepping since kprobes was modifying eip/rip incorrectly. Adjustment of eip/rip is not required after single stepping in case of ret/lret instruction, because eip/rip points to the correct location after execution of the ret/lret instruction. This patch fixes the above problem. Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!