/* * ring buffer tester and benchmark * * Copyright (C) 2009 Steven Rostedt */ #include #include #include #include #include struct rb_page { u64 ts; local_t commit; char data[4080]; }; /* run time and sleep time in seconds */ #define RUN_TIME 10 #define SLEEP_TIME 10 /* number of events for writer to wake up the reader */ static int wakeup_interval = 100; static int reader_finish; static struct completion read_start; static struct completion read_done; static struct ring_buffer *buffer; static struct task_struct *producer; static struct task_struct *consumer; static unsigned long read; static int disable_reader; module_param(disable_reader, uint, 0644); MODULE_PARM_DESC(disable_reader, "only run producer"); static int read_events; static int kill_test; #define KILL_TEST() \ do { \ if (!kill_test) { \ kill_test = 1; \ WARN_ON(1); \ } \ } while (0) enum event_status { EVENT_FOUND, EVENT_DROPPED, }; static enum event_status read_event(int cpu) { struct ring_buffer_event *event; int *entry; u64 ts; event = ring_buffer_consume(buffer, cpu, &ts); if (!event) return EVENT_DROPPED; entry = ring_buffer_event_data(event); if (*entry != cpu) { KILL_TEST(); return EVENT_DROPPED; } read++; return EVENT_FOUND; } static enum event_status read_page(int cpu) { struct ring_buffer_event *event; struct rb_page *rpage; unsigned long commit; void *bpage; int *entry; int ret; int inc; int i; bpage = ring_buffer_alloc_read_page(buffer); if (!bpage) return EVENT_DROPPED; ret = ring_buffer_read_page(buffer, &bpage, PAGE_SIZE, cpu, 1); if (ret >= 0) { rpage = bpage; commit = local_read(&rpage->commit); for (i = 0; i < commit && !kill_test; i += inc) { if (i >= (PAGE_SIZE - offsetof(struct rb_page, data))) { KILL_TEST(); break; } inc = -1; event = (void *)&rpage->data[i]; switch (event->type_len) { case RINGBUF_TYPE_PADDING: /* We don't expect any padding */ KILL_TEST(); break; case RINGBUF_TYPE_TIME_EXTEND: inc = 8; break; case 0: entry = ring_buffer_event_data(event); if (*entry != cpu) { KILL_TEST(); break; } read++; if (!event->array[0]) { KILL_TEST(); break; } inc = event->array[0]; break; default: entry = ring_buffer_event_data(event); if (*entry != cpu) { KILL_TEST(); break; } read++; inc = ((event->type_len + 1) * 4); } if (kill_test) break; if (inc <= 0) { KILL_TEST(); break; } } } ring_buffer_free_read_page(buffer, bpage); if (ret < 0) return EVENT_DROPPED; return EVENT_FOUND; } static void ring_buffer_consumer(void) { /* toggle between reading pages and events */ read_events ^= 1; read = 0; while (!reader_finish && !kill_test) { int found; do { int cpu; found = 0; for_each_online_cpu(cpu) { enum event_status stat; if (read_events) stat = read_event(cpu); else stat = read_page(cpu); if (kill_test) break; if (stat == EVENT_FOUND) found = 1; } } while (found && !kill_test); set_current_state(TASK_INTERRUPTIBLE); if (reader_finish) break; schedule(); __set_current_state(TASK_RUNNING); } reader_finish = 0; complete(&read_done); } static void ring_buffer_producer(void) { struct timeval start_tv; struct timeval end_tv; unsigned long long time; unsigned long long entries; unsigned long long overruns; unsigned long missed = 0; unsigned long hit = 0; unsigned long avg; int cnt = 0; /* * Hammer the buffer for 10 secs (this may * make the system stall) */ pr_info("Starting ring buffer hammer\n"); do_gettimeofday(&start_tv); do { struct ring_buffer_event *event; int *entry; event = ring_buffer_lock_reserve(buffer, 10); if (!event) { missed++; } else { hit++; entry = ring_buffer_event_data(event); *entry = smp_processor_id(); ring_buffer_unlock_commit(buffer, event); } do_gettimeofday(&end_tv); cnt++; if (consumer && !(cnt % wakeup_interval)) wake_up_process(consumer); #ifndef CONFIG_PREEMPT /* * If we are a non preempt kernel, the 10 second run will * stop everything while it runs. Instead, we will call * cond_resched and also add any time that was lost by a * rescedule. * * Do a cond resched at the same frequency we would wake up * the reader. */ if (cnt % wakeup_interval) cond_resched(); #endif } while (end_tv.tv_sec < (start_tv.tv_sec + RUN_TIME) && !kill_test); pr_info("End ring buffer hammer\n"); if (consumer) { /* Init both completions here to avoid races */ init_completion(&read_start); init_completion(&read_done); /* the completions must be visible before the finish var */ smp_wmb(); reader_finish = 1; /* finish var visible before waking up the consumer */ smp_wmb(); wake_up_process(consumer); wait_for_completion(&read_done); } time = end_tv.tv_sec - start_tv.tv_sec; time *= USEC_PER_SEC; time += (long long)((long)end_tv.tv_usec - (long)start_tv.tv_usec); entries = ring_buffer_entries(buffer); overruns = ring_buffer_overruns(buffer); if (kill_test) pr_info("ERROR!\n"); pr_info("Time: %lld (usecs)\n", time); pr_info("Overruns: %lld\n", overruns); if (disable_reader) pr_info("Read: (reader disabled)\n"); else pr_info("Read: %ld (by %s)\n", read, read_events ? "events" : "pages"); pr_info("Entries: %lld\n", entries); pr_info("Total: %lld\n", entries + overruns + read); pr_info("Missed: %ld\n", missed); pr_info("Hit: %ld\n", hit); /* Convert time from usecs to millisecs */ do_div(time, USEC_PER_MSEC); if (time) hit /= (long)time; else pr_info("TIME IS ZERO??\n"); pr_info("Entries per millisec: %ld\n", hit); if (hit) { /* Calculate the average time in nanosecs */ avg = NSEC_PER_MSEC / hit; pr_info("%ld ns per entry\n", avg); } if (missed) { if (time) missed /= (long)time; pr_info("Total iterations per millisec: %ld\n", hit + missed); /* it is possible that hit + missed will overflow and be zero */ if (!(hit + missed)) { pr_info("hit + missed overflowed and totalled zero!\n"); hit--; /* make it non zero */ } /* Caculate the average time in nanosecs */ avg = NSEC_PER_MSEC / (hit + missed); pr_info("%ld ns per entry\n", avg); } } static void wait_to_die(void) { set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { schedule(); set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); } static int ring_buffer_consumer_thread(void *arg) { while (!kthread_should_stop() && !kill_test) { complete(&read_start); ring_buffer_consumer(); set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop() || kill_test) break; schedule(); __set_current_state(TASK_RUNNING); } __set_current_state(TASK_RUNNING); if (kill_test) wait_to_die(); return 0; } static int ring_buffer_producer_thread(void *arg) { init_completion(&read_start); while (!kthread_should_stop() && !kill_test) { ring_buffer_reset(buffer); if (consumer) { smp_wmb(); wake_up_process(consumer); wait_for_completion(&read_start); } ring_buffer_producer(); pr_info("Sleeping for 10 secs\n"); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ * SLEEP_TIME); __set_current_state(TASK_RUNNING); } if (kill_test) wait_to_die(); return 0; } static int __init ring_buffer_benchmark_init(void) { int ret; /* make a one meg buffer in overwite mode */ buffer = ring_buffer_alloc(1000000, RB_FL_OVERWRITE); if (!buffer) return -ENOMEM; if (!disable_reader) { consumer = kthread_create(ring_buffer_consumer_thread, NULL, "rb_consumer"); ret = PTR_ERR(consumer); if (IS_ERR(consumer)) goto out_fail; } producer = kthread_run(ring_buffer_producer_thread, NULL, "rb_producer"); ret = PTR_ERR(producer); if (IS_ERR(producer)) goto out_kill; return 0; out_kill: if (consumer) kthread_stop(consumer); out_fail: ring_buffer_free(buffer); return ret; } static void __exit ring_buffer_benchmark_exit(void) { kthread_stop(producer); if (consumer) kthread_stop(consumer); ring_buffer_free(buffer); } module_init(ring_buffer_benchmark_init); module_exit(ring_buffer_benchmark_exit); MODULE_AUTHOR("Steven Rostedt"); MODULE_DESCRIPTION("ring_buffer_benchmark"); MODULE_LICENSE("GPL");