/* * Generic VM initialization for x86-64 NUMA setups. * Copyright 2002,2003 Andi Kleen, SuSE Labs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); struct memnode memnode; s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE }; int numa_off __initdata; static unsigned long __initdata nodemap_addr; static unsigned long __initdata nodemap_size; /* * Given a shift value, try to populate memnodemap[] * Returns : * 1 if OK * 0 if memnodmap[] too small (of shift too small) * -1 if node overlap or lost ram (shift too big) */ static int __init populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift, int *nodeids) { unsigned long addr, end; int i, res = -1; memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); for (i = 0; i < numnodes; i++) { addr = nodes[i].start; end = nodes[i].end; if (addr >= end) continue; if ((end >> shift) >= memnodemapsize) return 0; do { if (memnodemap[addr >> shift] != NUMA_NO_NODE) return -1; if (!nodeids) memnodemap[addr >> shift] = i; else memnodemap[addr >> shift] = nodeids[i]; addr += (1UL << shift); } while (addr < end); res = 1; } return res; } static int __init allocate_cachealigned_memnodemap(void) { unsigned long addr; memnodemap = memnode.embedded_map; if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) return 0; addr = 0x8000; nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); nodemap_addr = find_e820_area(addr, max_pfn<= end) continue; bitfield |= start; nodes_used++; if (end > memtop) memtop = end; } if (nodes_used <= 1) i = 63; else i = find_first_bit(&bitfield, sizeof(unsigned long)*8); memnodemapsize = (memtop >> i)+1; return i; } int __init compute_hash_shift(struct bootnode *nodes, int numnodes, int *nodeids) { int shift; shift = extract_lsb_from_nodes(nodes, numnodes); if (allocate_cachealigned_memnodemap()) return -1; printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", shift); if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { printk(KERN_INFO "Your memory is not aligned you need to " "rebuild your kernel with a bigger NODEMAPSIZE " "shift=%d\n", shift); return -1; } return shift; } int early_pfn_to_nid(unsigned long pfn) { return phys_to_nid(pfn << PAGE_SHIFT); } static void * __init early_node_mem(int nodeid, unsigned long start, unsigned long end, unsigned long size, unsigned long align) { unsigned long mem = find_e820_area(start, end, size, align); void *ptr; if (mem != -1L) return __va(mem); ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); if (ptr == NULL) { printk(KERN_ERR "Cannot find %lu bytes in node %d\n", size, nodeid); return NULL; } return ptr; } /* Initialize bootmem allocator for a node */ void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) { unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size; unsigned long bootmap_start, nodedata_phys; void *bootmap; const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); int nid; start = roundup(start, ZONE_ALIGN); printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end); start_pfn = start >> PAGE_SHIFT; last_pfn = end >> PAGE_SHIFT; node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, SMP_CACHE_BYTES); if (node_data[nodeid] == NULL) return; nodedata_phys = __pa(node_data[nodeid]); printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys, nodedata_phys + pgdat_size - 1); memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid]; NODE_DATA(nodeid)->node_start_pfn = start_pfn; NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; /* * Find a place for the bootmem map * nodedata_phys could be on other nodes by alloc_bootmem, * so need to sure bootmap_start not to be small, otherwise * early_node_mem will get that with find_e820_area instead * of alloc_bootmem, that could clash with reserved range */ bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn); nid = phys_to_nid(nodedata_phys); if (nid == nodeid) bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE); else bootmap_start = roundup(start, PAGE_SIZE); /* * SMP_CACHE_BYTES could be enough, but init_bootmem_node like * to use that to align to PAGE_SIZE */ bootmap = early_node_mem(nodeid, bootmap_start, end, bootmap_pages<= end) free_bootmem(nodedata_phys, pgdat_size); node_data[nodeid] = NULL; return; } bootmap_start = __pa(bootmap); bootmap_size = init_bootmem_node(NODE_DATA(nodeid), bootmap_start >> PAGE_SHIFT, start_pfn, last_pfn); printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n", bootmap_start, bootmap_start + bootmap_size - 1, bootmap_pages); free_bootmem_with_active_regions(nodeid, end); /* * convert early reserve to bootmem reserve earlier * otherwise early_node_mem could use early reserved mem * on previous node */ early_res_to_bootmem(start, end); /* * in some case early_node_mem could use alloc_bootmem * to get range on other node, don't reserve that again */ if (nid != nodeid) printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid); else reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size, BOOTMEM_DEFAULT); nid = phys_to_nid(bootmap_start); if (nid != nodeid) printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid); else reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<node * mapping. To avoid this fill in the mapping for all possible CPUs, * as the number of CPUs is not known yet. We round robin the existing * nodes. */ void __init numa_init_array(void) { int rr, i; rr = first_node(node_online_map); for (i = 0; i < NR_CPUS; i++) { if (early_cpu_to_node(i) != NUMA_NO_NODE) continue; numa_set_node(i, rr); rr = next_node(rr, node_online_map); if (rr == MAX_NUMNODES) rr = first_node(node_online_map); } } #ifdef CONFIG_NUMA_EMU /* Numa emulation */ static char *cmdline __initdata; /* * Setups up nid to range from addr to addr + size. If the end * boundary is greater than max_addr, then max_addr is used instead. * The return value is 0 if there is additional memory left for * allocation past addr and -1 otherwise. addr is adjusted to be at * the end of the node. */ static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr, u64 size, u64 max_addr) { int ret = 0; nodes[nid].start = *addr; *addr += size; if (*addr >= max_addr) { *addr = max_addr; ret = -1; } nodes[nid].end = *addr; node_set(nid, node_possible_map); printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, nodes[nid].start, nodes[nid].end, (nodes[nid].end - nodes[nid].start) >> 20); return ret; } /* * Splits num_nodes nodes up equally starting at node_start. The return value * is the number of nodes split up and addr is adjusted to be at the end of the * last node allocated. */ static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr, u64 max_addr, int node_start, int num_nodes) { unsigned int big; u64 size; int i; if (num_nodes <= 0) return -1; if (num_nodes > MAX_NUMNODES) num_nodes = MAX_NUMNODES; size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) / num_nodes; /* * Calculate the number of big nodes that can be allocated as a result * of consolidating the leftovers. */ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) / FAKE_NODE_MIN_SIZE; /* Round down to nearest FAKE_NODE_MIN_SIZE. */ size &= FAKE_NODE_MIN_HASH_MASK; if (!size) { printk(KERN_ERR "Not enough memory for each node. " "NUMA emulation disabled.\n"); return -1; } for (i = node_start; i < num_nodes + node_start; i++) { u64 end = *addr + size; if (i < big) end += FAKE_NODE_MIN_SIZE; /* * The final node can have the remaining system RAM. Other * nodes receive roughly the same amount of available pages. */ if (i == num_nodes + node_start - 1) end = max_addr; else while (end - *addr - e820_hole_size(*addr, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > max_addr) { end = max_addr; break; } } if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0) break; } return i - node_start + 1; } /* * Splits the remaining system RAM into chunks of size. The remaining memory is * always assigned to a final node and can be asymmetric. Returns the number of * nodes split. */ static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr, u64 max_addr, int node_start, u64 size) { int i = node_start; size = (size << 20) & FAKE_NODE_MIN_HASH_MASK; while (!setup_node_range(i++, nodes, addr, size, max_addr)) ; return i - node_start; } /* * Sets up the system RAM area from start_pfn to last_pfn according to the * numa=fake command-line option. */ static struct bootnode nodes[MAX_NUMNODES] __initdata; static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn) { u64 size, addr = start_pfn << PAGE_SHIFT; u64 max_addr = last_pfn << PAGE_SHIFT; int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i; memset(&nodes, 0, sizeof(nodes)); /* * If the numa=fake command-line is just a single number N, split the * system RAM into N fake nodes. */ if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) { long n = simple_strtol(cmdline, NULL, 0); num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n); if (num_nodes < 0) return num_nodes; goto out; } /* Parse the command line. */ for (coeff_flag = 0; ; cmdline++) { if (*cmdline && isdigit(*cmdline)) { num = num * 10 + *cmdline - '0'; continue; } if (*cmdline == '*') { if (num > 0) coeff = num; coeff_flag = 1; } if (!*cmdline || *cmdline == ',') { if (!coeff_flag) coeff = 1; /* * Round down to the nearest FAKE_NODE_MIN_SIZE. * Command-line coefficients are in megabytes. */ size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK; if (size) for (i = 0; i < coeff; i++, num_nodes++) if (setup_node_range(num_nodes, nodes, &addr, size, max_addr) < 0) goto done; if (!*cmdline) break; coeff_flag = 0; coeff = -1; } num = 0; } done: if (!num_nodes) return -1; /* Fill remainder of system RAM, if appropriate. */ if (addr < max_addr) { if (coeff_flag && coeff < 0) { /* Split remaining nodes into num-sized chunks */ num_nodes += split_nodes_by_size(nodes, &addr, max_addr, num_nodes, num); goto out; } switch (*(cmdline - 1)) { case '*': /* Split remaining nodes into coeff chunks */ if (coeff <= 0) break; num_nodes += split_nodes_equally(nodes, &addr, max_addr, num_nodes, coeff); break; case ',': /* Do not allocate remaining system RAM */ break; default: /* Give one final node */ setup_node_range(num_nodes, nodes, &addr, max_addr - addr, max_addr); num_nodes++; } } out: memnode_shift = compute_hash_shift(nodes, num_nodes, NULL); if (memnode_shift < 0) { memnode_shift = 0; printk(KERN_ERR "No NUMA hash function found. NUMA emulation " "disabled.\n"); return -1; } /* * We need to vacate all active ranges that may have been registered by * SRAT and set acpi_numa to -1 so that srat_disabled() always returns * true. NUMA emulation has succeeded so we will not scan ACPI nodes. */ remove_all_active_ranges(); #ifdef CONFIG_ACPI_NUMA acpi_numa = -1; #endif for_each_node_mask(i, node_possible_map) { e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, nodes[i].end >> PAGE_SHIFT); setup_node_bootmem(i, nodes[i].start, nodes[i].end); } acpi_fake_nodes(nodes, num_nodes); numa_init_array(); return 0; } #endif /* CONFIG_NUMA_EMU */ void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn) { int i; nodes_clear(node_possible_map); nodes_clear(node_online_map); #ifdef CONFIG_NUMA_EMU if (cmdline && !numa_emulation(start_pfn, last_pfn)) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif #ifdef CONFIG_ACPI_NUMA if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT)) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif #ifdef CONFIG_K8_NUMA if (!numa_off && !k8_scan_nodes(start_pfn<