/* linux/arch/sparc/kernel/process.c * * Copyright (C) 1995, 2008 David S. Miller (davem@davemloft.net) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) */ /* * This file handles the architecture-dependent parts of process handling.. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Power management idle function * Set in pm platform drivers (apc.c and pmc.c) */ void (*pm_idle)(void); EXPORT_SYMBOL(pm_idle); /* * Power-off handler instantiation for pm.h compliance * This is done via auxio, but could be used as a fallback * handler when auxio is not present-- unused for now... */ void (*pm_power_off)(void) = machine_power_off; EXPORT_SYMBOL(pm_power_off); /* * sysctl - toggle power-off restriction for serial console * systems in machine_power_off() */ int scons_pwroff = 1; extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *); struct task_struct *last_task_used_math = NULL; struct thread_info *current_set[NR_CPUS]; #ifndef CONFIG_SMP #define SUN4C_FAULT_HIGH 100 /* * the idle loop on a Sparc... ;) */ void cpu_idle(void) { /* endless idle loop with no priority at all */ for (;;) { if (ARCH_SUN4C) { static int count = HZ; static unsigned long last_jiffies; static unsigned long last_faults; static unsigned long fps; unsigned long now; unsigned long faults; extern unsigned long sun4c_kernel_faults; extern void sun4c_grow_kernel_ring(void); local_irq_disable(); now = jiffies; count -= (now - last_jiffies); last_jiffies = now; if (count < 0) { count += HZ; faults = sun4c_kernel_faults; fps = (fps + (faults - last_faults)) >> 1; last_faults = faults; #if 0 printk("kernel faults / second = %ld\n", fps); #endif if (fps >= SUN4C_FAULT_HIGH) { sun4c_grow_kernel_ring(); } } local_irq_enable(); } if (pm_idle) { while (!need_resched()) (*pm_idle)(); } else { while (!need_resched()) cpu_relax(); } preempt_enable_no_resched(); schedule(); preempt_disable(); check_pgt_cache(); } } #else /* This is being executed in task 0 'user space'. */ void cpu_idle(void) { set_thread_flag(TIF_POLLING_NRFLAG); /* endless idle loop with no priority at all */ while(1) { while (!need_resched()) cpu_relax(); preempt_enable_no_resched(); schedule(); preempt_disable(); check_pgt_cache(); } } #endif /* XXX cli/sti -> local_irq_xxx here, check this works once SMP is fixed. */ void machine_halt(void) { local_irq_enable(); mdelay(8); local_irq_disable(); prom_halt(); panic("Halt failed!"); } void machine_restart(char * cmd) { char *p; local_irq_enable(); mdelay(8); local_irq_disable(); p = strchr (reboot_command, '\n'); if (p) *p = 0; if (cmd) prom_reboot(cmd); if (*reboot_command) prom_reboot(reboot_command); prom_feval ("reset"); panic("Reboot failed!"); } void machine_power_off(void) { if (auxio_power_register && (strcmp(of_console_device->type, "serial") || scons_pwroff)) *auxio_power_register |= AUXIO_POWER_OFF; machine_halt(); } #if 0 static DEFINE_SPINLOCK(sparc_backtrace_lock); void __show_backtrace(unsigned long fp) { struct reg_window32 *rw; unsigned long flags; int cpu = smp_processor_id(); spin_lock_irqsave(&sparc_backtrace_lock, flags); rw = (struct reg_window32 *)fp; while(rw && (((unsigned long) rw) >= PAGE_OFFSET) && !(((unsigned long) rw) & 0x7)) { printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] " "FP[%08lx] CALLER[%08lx]: ", cpu, rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3], rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]); printk("%pS\n", (void *) rw->ins[7]); rw = (struct reg_window32 *) rw->ins[6]; } spin_unlock_irqrestore(&sparc_backtrace_lock, flags); } #define __SAVE __asm__ __volatile__("save %sp, -0x40, %sp\n\t") #define __RESTORE __asm__ __volatile__("restore %g0, %g0, %g0\n\t") #define __GET_FP(fp) __asm__ __volatile__("mov %%i6, %0" : "=r" (fp)) void show_backtrace(void) { unsigned long fp; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __GET_FP(fp); __show_backtrace(fp); } #ifdef CONFIG_SMP void smp_show_backtrace_all_cpus(void) { xc0((smpfunc_t) show_backtrace); show_backtrace(); } #endif void show_stackframe(struct sparc_stackf *sf) { unsigned long size; unsigned long *stk; int i; printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx " "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n", sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3], sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]); printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx " "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n", sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3], sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc); printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx " "x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n", (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1], sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5], sf->xxargs[0]); size = ((unsigned long)sf->fp) - ((unsigned long)sf); size -= STACKFRAME_SZ; stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ); i = 0; do { printk("s%d: %08lx\n", i++, *stk++); } while ((size -= sizeof(unsigned long))); } #endif void show_regs(struct pt_regs *r) { struct reg_window32 *rw = (struct reg_window32 *) r->u_regs[14]; printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx %s\n", r->psr, r->pc, r->npc, r->y, print_tainted()); printk("PC: <%pS>\n", (void *) r->pc); printk("%%G: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", r->u_regs[0], r->u_regs[1], r->u_regs[2], r->u_regs[3], r->u_regs[4], r->u_regs[5], r->u_regs[6], r->u_regs[7]); printk("%%O: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", r->u_regs[8], r->u_regs[9], r->u_regs[10], r->u_regs[11], r->u_regs[12], r->u_regs[13], r->u_regs[14], r->u_regs[15]); printk("RPC: <%pS>\n", (void *) r->u_regs[15]); printk("%%L: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3], rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]); printk("%%I: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3], rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]); } /* * The show_stack is an external API which we do not use ourselves. * The oops is printed in die_if_kernel. */ void show_stack(struct task_struct *tsk, unsigned long *_ksp) { unsigned long pc, fp; unsigned long task_base; struct reg_window32 *rw; int count = 0; if (tsk != NULL) task_base = (unsigned long) task_stack_page(tsk); else task_base = (unsigned long) current_thread_info(); fp = (unsigned long) _ksp; do { /* Bogus frame pointer? */ if (fp < (task_base + sizeof(struct thread_info)) || fp >= (task_base + (PAGE_SIZE << 1))) break; rw = (struct reg_window32 *) fp; pc = rw->ins[7]; printk("[%08lx : ", pc); printk("%pS ] ", (void *) pc); fp = rw->ins[6]; } while (++count < 16); printk("\n"); } void dump_stack(void) { unsigned long *ksp; __asm__ __volatile__("mov %%fp, %0" : "=r" (ksp)); show_stack(current, ksp); } EXPORT_SYMBOL(dump_stack); /* * Note: sparc64 has a pretty intricated thread_saved_pc, check it out. */ unsigned long thread_saved_pc(struct task_struct *tsk) { return task_thread_info(tsk)->kpc; } /* * Free current thread data structures etc.. */ void exit_thread(void) { #ifndef CONFIG_SMP if(last_task_used_math == current) { #else if (test_thread_flag(TIF_USEDFPU)) { #endif /* Keep process from leaving FPU in a bogon state. */ put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); #ifndef CONFIG_SMP last_task_used_math = NULL; #else clear_thread_flag(TIF_USEDFPU); #endif } } void flush_thread(void) { current_thread_info()->w_saved = 0; #ifndef CONFIG_SMP if(last_task_used_math == current) { #else if (test_thread_flag(TIF_USEDFPU)) { #endif /* Clean the fpu. */ put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); #ifndef CONFIG_SMP last_task_used_math = NULL; #else clear_thread_flag(TIF_USEDFPU); #endif } /* Now, this task is no longer a kernel thread. */ current->thread.current_ds = USER_DS; if (current->thread.flags & SPARC_FLAG_KTHREAD) { current->thread.flags &= ~SPARC_FLAG_KTHREAD; /* We must fixup kregs as well. */ /* XXX This was not fixed for ti for a while, worked. Unused? */ current->thread.kregs = (struct pt_regs *) (task_stack_page(current) + (THREAD_SIZE - TRACEREG_SZ)); } } static inline struct sparc_stackf __user * clone_stackframe(struct sparc_stackf __user *dst, struct sparc_stackf __user *src) { unsigned long size, fp; struct sparc_stackf *tmp; struct sparc_stackf __user *sp; if (get_user(tmp, &src->fp)) return NULL; fp = (unsigned long) tmp; size = (fp - ((unsigned long) src)); fp = (unsigned long) dst; sp = (struct sparc_stackf __user *)(fp - size); /* do_fork() grabs the parent semaphore, we must release it * temporarily so we can build the child clone stack frame * without deadlocking. */ if (__copy_user(sp, src, size)) sp = NULL; else if (put_user(fp, &sp->fp)) sp = NULL; return sp; } asmlinkage int sparc_do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size) { unsigned long parent_tid_ptr, child_tid_ptr; unsigned long orig_i1 = regs->u_regs[UREG_I1]; long ret; parent_tid_ptr = regs->u_regs[UREG_I2]; child_tid_ptr = regs->u_regs[UREG_I4]; ret = do_fork(clone_flags, stack_start, regs, stack_size, (int __user *) parent_tid_ptr, (int __user *) child_tid_ptr); /* If we get an error and potentially restart the system * call, we're screwed because copy_thread() clobbered * the parent's %o1. So detect that case and restore it * here. */ if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) regs->u_regs[UREG_I1] = orig_i1; return ret; } /* Copy a Sparc thread. The fork() return value conventions * under SunOS are nothing short of bletcherous: * Parent --> %o0 == childs pid, %o1 == 0 * Child --> %o0 == parents pid, %o1 == 1 * * NOTE: We have a separate fork kpsr/kwim because * the parent could change these values between * sys_fork invocation and when we reach here * if the parent should sleep while trying to * allocate the task_struct and kernel stack in * do_fork(). * XXX See comment above sys_vfork in sparc64. todo. */ extern void ret_from_fork(void); int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct thread_info *ti = task_thread_info(p); struct pt_regs *childregs; char *new_stack; #ifndef CONFIG_SMP if(last_task_used_math == current) { #else if (test_thread_flag(TIF_USEDFPU)) { #endif put_psr(get_psr() | PSR_EF); fpsave(&p->thread.float_regs[0], &p->thread.fsr, &p->thread.fpqueue[0], &p->thread.fpqdepth); #ifdef CONFIG_SMP clear_thread_flag(TIF_USEDFPU); #endif } /* * p->thread_info new_stack childregs * ! ! ! {if(PSR_PS) } * V V (stk.fr.) V (pt_regs) { (stk.fr.) } * +----- - - - - - ------+===========+============={+==========}+ */ new_stack = task_stack_page(p) + THREAD_SIZE; if (regs->psr & PSR_PS) new_stack -= STACKFRAME_SZ; new_stack -= STACKFRAME_SZ + TRACEREG_SZ; memcpy(new_stack, (char *)regs - STACKFRAME_SZ, STACKFRAME_SZ + TRACEREG_SZ); childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ); /* * A new process must start with interrupts closed in 2.5, * because this is how Mingo's scheduler works (see schedule_tail * and finish_arch_switch). If we do not do it, a timer interrupt hits * before we unlock, attempts to re-take the rq->lock, and then we die. * Thus, kpsr|=PSR_PIL. */ ti->ksp = (unsigned long) new_stack; ti->kpc = (((unsigned long) ret_from_fork) - 0x8); ti->kpsr = current->thread.fork_kpsr | PSR_PIL; ti->kwim = current->thread.fork_kwim; if(regs->psr & PSR_PS) { extern struct pt_regs fake_swapper_regs; p->thread.kregs = &fake_swapper_regs; new_stack += STACKFRAME_SZ + TRACEREG_SZ; childregs->u_regs[UREG_FP] = (unsigned long) new_stack; p->thread.flags |= SPARC_FLAG_KTHREAD; p->thread.current_ds = KERNEL_DS; memcpy(new_stack, (void *)regs->u_regs[UREG_FP], STACKFRAME_SZ); childregs->u_regs[UREG_G6] = (unsigned long) ti; } else { p->thread.kregs = childregs; childregs->u_regs[UREG_FP] = sp; p->thread.flags &= ~SPARC_FLAG_KTHREAD; p->thread.current_ds = USER_DS; if (sp != regs->u_regs[UREG_FP]) { struct sparc_stackf __user *childstack; struct sparc_stackf __user *parentstack; /* * This is a clone() call with supplied user stack. * Set some valid stack frames to give to the child. */ childstack = (struct sparc_stackf __user *) (sp & ~0x7UL); parentstack = (struct sparc_stackf __user *) regs->u_regs[UREG_FP]; #if 0 printk("clone: parent stack:\n"); show_stackframe(parentstack); #endif childstack = clone_stackframe(childstack, parentstack); if (!childstack) return -EFAULT; #if 0 printk("clone: child stack:\n"); show_stackframe(childstack); #endif childregs->u_regs[UREG_FP] = (unsigned long)childstack; } } #ifdef CONFIG_SMP /* FPU must be disabled on SMP. */ childregs->psr &= ~PSR_EF; #endif /* Set the return value for the child. */ childregs->u_regs[UREG_I0] = current->pid; childregs->u_regs[UREG_I1] = 1; /* Set the return value for the parent. */ regs->u_regs[UREG_I1] = 0; if (clone_flags & CLONE_SETTLS) childregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; return 0; } /* * fill in the fpu structure for a core dump. */ int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) { if (used_math()) { memset(fpregs, 0, sizeof(*fpregs)); fpregs->pr_q_entrysize = 8; return 1; } #ifdef CONFIG_SMP if (test_thread_flag(TIF_USEDFPU)) { put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); if (regs != NULL) { regs->psr &= ~(PSR_EF); clear_thread_flag(TIF_USEDFPU); } } #else if (current == last_task_used_math) { put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); if (regs != NULL) { regs->psr &= ~(PSR_EF); last_task_used_math = NULL; } } #endif memcpy(&fpregs->pr_fr.pr_regs[0], ¤t->thread.float_regs[0], (sizeof(unsigned long) * 32)); fpregs->pr_fsr = current->thread.fsr; fpregs->pr_qcnt = current->thread.fpqdepth; fpregs->pr_q_entrysize = 8; fpregs->pr_en = 1; if(fpregs->pr_qcnt != 0) { memcpy(&fpregs->pr_q[0], ¤t->thread.fpqueue[0], sizeof(struct fpq) * fpregs->pr_qcnt); } /* Zero out the rest. */ memset(&fpregs->pr_q[fpregs->pr_qcnt], 0, sizeof(struct fpq) * (32 - fpregs->pr_qcnt)); return 1; } /* * sparc_execve() executes a new program after the asm stub has set * things up for us. This should basically do what I want it to. */ asmlinkage int sparc_execve(struct pt_regs *regs) { int error, base = 0; char *filename; /* Check for indirect call. */ if(regs->u_regs[UREG_G1] == 0) base = 1; filename = getname((char __user *)regs->u_regs[base + UREG_I0]); error = PTR_ERR(filename); if(IS_ERR(filename)) goto out; error = do_execve(filename, (char __user * __user *)regs->u_regs[base + UREG_I1], (char __user * __user *)regs->u_regs[base + UREG_I2], regs); putname(filename); out: return error; } /* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be freed until both the parent and the child have exited. */ pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { long retval; __asm__ __volatile__("mov %4, %%g2\n\t" /* Set aside fn ptr... */ "mov %5, %%g3\n\t" /* and arg. */ "mov %1, %%g1\n\t" "mov %2, %%o0\n\t" /* Clone flags. */ "mov 0, %%o1\n\t" /* usp arg == 0 */ "t 0x10\n\t" /* Linux/Sparc clone(). */ "cmp %%o1, 0\n\t" "be 1f\n\t" /* The parent, just return. */ " nop\n\t" /* Delay slot. */ "jmpl %%g2, %%o7\n\t" /* Call the function. */ " mov %%g3, %%o0\n\t" /* Get back the arg in delay. */ "mov %3, %%g1\n\t" "t 0x10\n\t" /* Linux/Sparc exit(). */ /* Notreached by child. */ "1: mov %%o0, %0\n\t" : "=r" (retval) : "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), "i" (__NR_exit), "r" (fn), "r" (arg) : "g1", "g2", "g3", "o0", "o1", "memory", "cc"); return retval; } EXPORT_SYMBOL(kernel_thread); unsigned long get_wchan(struct task_struct *task) { unsigned long pc, fp, bias = 0; unsigned long task_base = (unsigned long) task; unsigned long ret = 0; struct reg_window32 *rw; int count = 0; if (!task || task == current || task->state == TASK_RUNNING) goto out; fp = task_thread_info(task)->ksp + bias; do { /* Bogus frame pointer? */ if (fp < (task_base + sizeof(struct thread_info)) || fp >= (task_base + (2 * PAGE_SIZE))) break; rw = (struct reg_window32 *) fp; pc = rw->ins[7]; if (!in_sched_functions(pc)) { ret = pc; goto out; } fp = rw->ins[6] + bias; } while (++count < 16); out: return ret; }