#include #include #include #include #include #include #include #include #include #include static int node_match(struct device *dev, void *data) { struct of_device *op = to_of_device(dev); struct device_node *dp = data; return (op->node == dp); } struct of_device *of_find_device_by_node(struct device_node *dp) { struct device *dev = bus_find_device(&of_platform_bus_type, NULL, dp, node_match); if (dev) return to_of_device(dev); return NULL; } EXPORT_SYMBOL(of_find_device_by_node); unsigned int irq_of_parse_and_map(struct device_node *node, int index) { struct of_device *op = of_find_device_by_node(node); if (!op || index >= op->num_irqs) return 0; return op->irqs[index]; } EXPORT_SYMBOL(irq_of_parse_and_map); /* Take the archdata values for IOMMU, STC, and HOSTDATA found in * BUS and propagate to all child of_device objects. */ void of_propagate_archdata(struct of_device *bus) { struct dev_archdata *bus_sd = &bus->dev.archdata; struct device_node *bus_dp = bus->node; struct device_node *dp; for (dp = bus_dp->child; dp; dp = dp->sibling) { struct of_device *op = of_find_device_by_node(dp); op->dev.archdata.iommu = bus_sd->iommu; op->dev.archdata.stc = bus_sd->stc; op->dev.archdata.host_controller = bus_sd->host_controller; op->dev.archdata.numa_node = bus_sd->numa_node; if (dp->child) of_propagate_archdata(op); } } struct bus_type of_platform_bus_type; EXPORT_SYMBOL(of_platform_bus_type); static inline u64 of_read_addr(const u32 *cell, int size) { u64 r = 0; while (size--) r = (r << 32) | *(cell++); return r; } static void __init get_cells(struct device_node *dp, int *addrc, int *sizec) { if (addrc) *addrc = of_n_addr_cells(dp); if (sizec) *sizec = of_n_size_cells(dp); } /* Max address size we deal with */ #define OF_MAX_ADDR_CELLS 4 struct of_bus { const char *name; const char *addr_prop_name; int (*match)(struct device_node *parent); void (*count_cells)(struct device_node *child, int *addrc, int *sizec); int (*map)(u32 *addr, const u32 *range, int na, int ns, int pna); unsigned long (*get_flags)(const u32 *addr, unsigned long); }; /* * Default translator (generic bus) */ static void of_bus_default_count_cells(struct device_node *dev, int *addrc, int *sizec) { get_cells(dev, addrc, sizec); } /* Make sure the least significant 64-bits are in-range. Even * for 3 or 4 cell values it is a good enough approximation. */ static int of_out_of_range(const u32 *addr, const u32 *base, const u32 *size, int na, int ns) { u64 a = of_read_addr(addr, na); u64 b = of_read_addr(base, na); if (a < b) return 1; b += of_read_addr(size, ns); if (a >= b) return 1; return 0; } static int of_bus_default_map(u32 *addr, const u32 *range, int na, int ns, int pna) { u32 result[OF_MAX_ADDR_CELLS]; int i; if (ns > 2) { printk("of_device: Cannot handle size cells (%d) > 2.", ns); return -EINVAL; } if (of_out_of_range(addr, range, range + na + pna, na, ns)) return -EINVAL; /* Start with the parent range base. */ memcpy(result, range + na, pna * 4); /* Add in the child address offset. */ for (i = 0; i < na; i++) result[pna - 1 - i] += (addr[na - 1 - i] - range[na - 1 - i]); memcpy(addr, result, pna * 4); return 0; } static unsigned long of_bus_default_get_flags(const u32 *addr, unsigned long flags) { if (flags) return flags; return IORESOURCE_MEM; } /* * PCI bus specific translator */ static int of_bus_pci_match(struct device_node *np) { if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) { /* Do not do PCI specific frobbing if the * PCI bridge lacks a ranges property. We * want to pass it through up to the next * parent as-is, not with the PCI translate * method which chops off the top address cell. */ if (!of_find_property(np, "ranges", NULL)) return 0; return 1; } return 0; } static void of_bus_pci_count_cells(struct device_node *np, int *addrc, int *sizec) { if (addrc) *addrc = 3; if (sizec) *sizec = 2; } static int of_bus_pci_map(u32 *addr, const u32 *range, int na, int ns, int pna) { u32 result[OF_MAX_ADDR_CELLS]; int i; /* Check address type match */ if ((addr[0] ^ range[0]) & 0x03000000) return -EINVAL; if (of_out_of_range(addr + 1, range + 1, range + na + pna, na - 1, ns)) return -EINVAL; /* Start with the parent range base. */ memcpy(result, range + na, pna * 4); /* Add in the child address offset, skipping high cell. */ for (i = 0; i < na - 1; i++) result[pna - 1 - i] += (addr[na - 1 - i] - range[na - 1 - i]); memcpy(addr, result, pna * 4); return 0; } static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags) { u32 w = addr[0]; /* For PCI, we override whatever child busses may have used. */ flags = 0; switch((w >> 24) & 0x03) { case 0x01: flags |= IORESOURCE_IO; break; case 0x02: /* 32 bits */ case 0x03: /* 64 bits */ flags |= IORESOURCE_MEM; break; } if (w & 0x40000000) flags |= IORESOURCE_PREFETCH; return flags; } /* * SBUS bus specific translator */ static int of_bus_sbus_match(struct device_node *np) { return !strcmp(np->name, "sbus") || !strcmp(np->name, "sbi"); } static void of_bus_sbus_count_cells(struct device_node *child, int *addrc, int *sizec) { if (addrc) *addrc = 2; if (sizec) *sizec = 1; } static int of_bus_sbus_map(u32 *addr, const u32 *range, int na, int ns, int pna) { return of_bus_default_map(addr, range, na, ns, pna); } static unsigned long of_bus_sbus_get_flags(const u32 *addr, unsigned long flags) { return IORESOURCE_MEM; } /* * Array of bus specific translators */ static struct of_bus of_busses[] = { /* PCI */ { .name = "pci", .addr_prop_name = "assigned-addresses", .match = of_bus_pci_match, .count_cells = of_bus_pci_count_cells, .map = of_bus_pci_map, .get_flags = of_bus_pci_get_flags, }, /* SBUS */ { .name = "sbus", .addr_prop_name = "reg", .match = of_bus_sbus_match, .count_cells = of_bus_sbus_count_cells, .map = of_bus_sbus_map, .get_flags = of_bus_sbus_get_flags, }, /* Default */ { .name = "default", .addr_prop_name = "reg", .match = NULL, .count_cells = of_bus_default_count_cells, .map = of_bus_default_map, .get_flags = of_bus_default_get_flags, }, }; static struct of_bus *of_match_bus(struct device_node *np) { int i; for (i = 0; i < ARRAY_SIZE(of_busses); i ++) if (!of_busses[i].match || of_busses[i].match(np)) return &of_busses[i]; BUG(); return NULL; } static int __init build_one_resource(struct device_node *parent, struct of_bus *bus, struct of_bus *pbus, u32 *addr, int na, int ns, int pna) { const u32 *ranges; unsigned int rlen; int rone; ranges = of_get_property(parent, "ranges", &rlen); if (ranges == NULL || rlen == 0) { u32 result[OF_MAX_ADDR_CELLS]; int i; memset(result, 0, pna * 4); for (i = 0; i < na; i++) result[pna - 1 - i] = addr[na - 1 - i]; memcpy(addr, result, pna * 4); return 0; } /* Now walk through the ranges */ rlen /= 4; rone = na + pna + ns; for (; rlen >= rone; rlen -= rone, ranges += rone) { if (!bus->map(addr, ranges, na, ns, pna)) return 0; } return 1; } static int __init use_1to1_mapping(struct device_node *pp) { /* If we have a ranges property in the parent, use it. */ if (of_find_property(pp, "ranges", NULL) != NULL) return 0; /* Some SBUS devices use intermediate nodes to express * hierarchy within the device itself. These aren't * real bus nodes, and don't have a 'ranges' property. * But, we should still pass the translation work up * to the SBUS itself. */ if (!strcmp(pp->name, "dma") || !strcmp(pp->name, "espdma") || !strcmp(pp->name, "ledma") || !strcmp(pp->name, "lebuffer")) return 0; return 1; } static int of_resource_verbose; static void __init build_device_resources(struct of_device *op, struct device *parent) { struct of_device *p_op; struct of_bus *bus; int na, ns; int index, num_reg; const void *preg; if (!parent) return; p_op = to_of_device(parent); bus = of_match_bus(p_op->node); bus->count_cells(op->node, &na, &ns); preg = of_get_property(op->node, bus->addr_prop_name, &num_reg); if (!preg || num_reg == 0) return; /* Convert to num-cells. */ num_reg /= 4; /* Conver to num-entries. */ num_reg /= na + ns; for (index = 0; index < num_reg; index++) { struct resource *r = &op->resource[index]; u32 addr[OF_MAX_ADDR_CELLS]; const u32 *reg = (preg + (index * ((na + ns) * 4))); struct device_node *dp = op->node; struct device_node *pp = p_op->node; struct of_bus *pbus, *dbus; u64 size, result = OF_BAD_ADDR; unsigned long flags; int dna, dns; int pna, pns; size = of_read_addr(reg + na, ns); memcpy(addr, reg, na * 4); flags = bus->get_flags(reg, 0); if (use_1to1_mapping(pp)) { result = of_read_addr(addr, na); goto build_res; } dna = na; dns = ns; dbus = bus; while (1) { dp = pp; pp = dp->parent; if (!pp) { result = of_read_addr(addr, dna); break; } pbus = of_match_bus(pp); pbus->count_cells(dp, &pna, &pns); if (build_one_resource(dp, dbus, pbus, addr, dna, dns, pna)) break; flags = pbus->get_flags(addr, flags); dna = pna; dns = pns; dbus = pbus; } build_res: memset(r, 0, sizeof(*r)); if (of_resource_verbose) printk("%s reg[%d] -> %llx\n", op->node->full_name, index, result); if (result != OF_BAD_ADDR) { r->start = result & 0xffffffff; r->end = result + size - 1; r->flags = flags | ((result >> 32ULL) & 0xffUL); } r->name = op->node->name; } } static struct of_device * __init scan_one_device(struct device_node *dp, struct device *parent) { struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL); const struct linux_prom_irqs *intr; struct dev_archdata *sd; int len, i; if (!op) return NULL; sd = &op->dev.archdata; sd->prom_node = dp; sd->op = op; op->node = dp; op->clock_freq = of_getintprop_default(dp, "clock-frequency", (25*1000*1000)); op->portid = of_getintprop_default(dp, "upa-portid", -1); if (op->portid == -1) op->portid = of_getintprop_default(dp, "portid", -1); intr = of_get_property(dp, "intr", &len); if (intr) { op->num_irqs = len / sizeof(struct linux_prom_irqs); for (i = 0; i < op->num_irqs; i++) op->irqs[i] = intr[i].pri; } else { const unsigned int *irq = of_get_property(dp, "interrupts", &len); if (irq) { op->num_irqs = len / sizeof(unsigned int); for (i = 0; i < op->num_irqs; i++) op->irqs[i] = irq[i]; } else { op->num_irqs = 0; } } if (sparc_cpu_model == sun4d) { static int pil_to_sbus[] = { 0, 0, 1, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 0, }; struct device_node *io_unit, *sbi = dp->parent; const struct linux_prom_registers *regs; int board, slot; while (sbi) { if (!strcmp(sbi->name, "sbi")) break; sbi = sbi->parent; } if (!sbi) goto build_resources; regs = of_get_property(dp, "reg", NULL); if (!regs) goto build_resources; slot = regs->which_io; /* If SBI's parent is not io-unit or the io-unit lacks * a "board#" property, something is very wrong. */ if (!sbi->parent || strcmp(sbi->parent->name, "io-unit")) { printk("%s: Error, parent is not io-unit.\n", sbi->full_name); goto build_resources; } io_unit = sbi->parent; board = of_getintprop_default(io_unit, "board#", -1); if (board == -1) { printk("%s: Error, lacks board# property.\n", io_unit->full_name); goto build_resources; } for (i = 0; i < op->num_irqs; i++) { int this_irq = op->irqs[i]; int sbusl = pil_to_sbus[this_irq]; if (sbusl) this_irq = (((board + 1) << 5) + (sbusl << 2) + slot); op->irqs[i] = this_irq; } } build_resources: build_device_resources(op, parent); op->dev.parent = parent; op->dev.bus = &of_platform_bus_type; if (!parent) strcpy(op->dev.bus_id, "root"); else sprintf(op->dev.bus_id, "%08x", dp->node); if (of_device_register(op)) { printk("%s: Could not register of device.\n", dp->full_name); kfree(op); op = NULL; } return op; } static void __init scan_tree(struct device_node *dp, struct device *parent) { while (dp) { struct of_device *op = scan_one_device(dp, parent); if (op) scan_tree(dp->child, &op->dev); dp = dp->sibling; } } static void __init scan_of_devices(void) { struct device_node *root = of_find_node_by_path("/"); struct of_device *parent; parent = scan_one_device(root, NULL); if (!parent) return; scan_tree(root->child, &parent->dev); } static int __init of_bus_driver_init(void) { int err; err = of_bus_type_init(&of_platform_bus_type, "of"); if (!err) scan_of_devices(); return err; } postcore_initcall(of_bus_driver_init); static int __init of_debug(char *str) { int val = 0; get_option(&str, &val); if (val & 1) of_resource_verbose = 1; return 1; } __setup("of_debug=", of_debug);