/* * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf * Kevin Wolf * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #define PTE_SIZE 12 #define VSID_ALL 0 /* #define DEBUG_MMU */ /* #define DEBUG_SLB */ #ifdef DEBUG_MMU #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) #else #define dprintk_mmu(a, ...) do { } while(0) #endif #ifdef DEBUG_SLB #define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__) #else #define dprintk_slb(a, ...) do { } while(0) #endif static void invalidate_pte(struct hpte_cache *pte) { dprintk_mmu("KVM: Flushing SPT %d: 0x%llx (0x%llx) -> 0x%llx\n", i, pte->pte.eaddr, pte->pte.vpage, pte->host_va); ppc_md.hpte_invalidate(pte->slot, pte->host_va, MMU_PAGE_4K, MMU_SEGSIZE_256M, false); pte->host_va = 0; kvm_release_pfn_dirty(pte->pfn); } void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, u64 guest_ea, u64 ea_mask) { int i; dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%llx & 0x%llx\n", vcpu->arch.hpte_cache_offset, guest_ea, ea_mask); BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); guest_ea &= ea_mask; for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if ((pte->pte.eaddr & ea_mask) == guest_ea) { invalidate_pte(pte); } } /* Doing a complete flush -> start from scratch */ if (!ea_mask) vcpu->arch.hpte_cache_offset = 0; } void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) { int i; dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n", vcpu->arch.hpte_cache_offset, guest_vp, vp_mask); BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); guest_vp &= vp_mask; for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if ((pte->pte.vpage & vp_mask) == guest_vp) { invalidate_pte(pte); } } } void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, u64 pa_start, u64 pa_end) { int i; dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n", vcpu->arch.hpte_cache_offset, guest_pa, pa_mask); BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if ((pte->pte.raddr >= pa_start) && (pte->pte.raddr < pa_end)) { invalidate_pte(pte); } } } struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data) { int i; u64 guest_vp; guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false); for (i=0; iarch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if (pte->pte.vpage == guest_vp) return &pte->pte; } return NULL; } static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) { if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM) kvmppc_mmu_pte_flush(vcpu, 0, 0); return vcpu->arch.hpte_cache_offset++; } /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using * a hash, so we don't waste cycles on looping */ static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) { return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); } static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; u16 sid_map_mask; if (vcpu->arch.msr & MSR_PR) gvsid |= VSID_PR; sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); map = &to_book3s(vcpu)->sid_map[sid_map_mask]; if (map->guest_vsid == gvsid) { dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n", gvsid, map->host_vsid); return map; } map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; if (map->guest_vsid == gvsid) { dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n", gvsid, map->host_vsid); return map; } dprintk_slb("SLB: Searching 0x%llx -> not found\n", gvsid); return NULL; } int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) { pfn_t hpaddr; ulong hash, hpteg, va; u64 vsid; int ret; int rflags = 0x192; int vflags = 0; int attempt = 0; struct kvmppc_sid_map *map; /* Get host physical address for gpa */ hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); if (kvm_is_error_hva(hpaddr)) { printk(KERN_INFO "Couldn't get guest page for gfn %llx!\n", orig_pte->eaddr); return -EINVAL; } hpaddr <<= PAGE_SHIFT; #if PAGE_SHIFT == 12 #elif PAGE_SHIFT == 16 hpaddr |= orig_pte->raddr & 0xf000; #else #error Unknown page size #endif /* and write the mapping ea -> hpa into the pt */ vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); map = find_sid_vsid(vcpu, vsid); if (!map) { kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); map = find_sid_vsid(vcpu, vsid); } BUG_ON(!map); vsid = map->host_vsid; va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M); if (!orig_pte->may_write) rflags |= HPTE_R_PP; else mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); if (!orig_pte->may_execute) rflags |= HPTE_R_N; hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M); map_again: hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); /* In case we tried normal mapping already, let's nuke old entries */ if (attempt > 1) if (ppc_md.hpte_remove(hpteg) < 0) return -1; ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M); if (ret < 0) { /* If we couldn't map a primary PTE, try a secondary */ #ifdef USE_SECONDARY hash = ~hash; attempt++; if (attempt % 2) vflags = HPTE_V_SECONDARY; else vflags = 0; #else attempt = 2; #endif goto map_again; } else { int hpte_id = kvmppc_mmu_hpte_cache_next(vcpu); struct hpte_cache *pte = &vcpu->arch.hpte_cache[hpte_id]; dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%lx (0x%llx) -> %lx\n", ((rflags & HPTE_R_PP) == 3) ? '-' : 'w', (rflags & HPTE_R_N) ? '-' : 'x', orig_pte->eaddr, hpteg, va, orig_pte->vpage, hpaddr); pte->slot = hpteg + (ret & 7); pte->host_va = va; pte->pte = *orig_pte; pte->pfn = hpaddr >> PAGE_SHIFT; } return 0; } static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); u16 sid_map_mask; static int backwards_map = 0; if (vcpu->arch.msr & MSR_PR) gvsid |= VSID_PR; /* We might get collisions that trap in preceding order, so let's map them differently */ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); if (backwards_map) sid_map_mask = SID_MAP_MASK - sid_map_mask; map = &to_book3s(vcpu)->sid_map[sid_map_mask]; /* Make sure we're taking the other map next time */ backwards_map = !backwards_map; /* Uh-oh ... out of mappings. Let's flush! */ if (vcpu_book3s->vsid_next == vcpu_book3s->vsid_max) { vcpu_book3s->vsid_next = vcpu_book3s->vsid_first; memset(vcpu_book3s->sid_map, 0, sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); kvmppc_mmu_pte_flush(vcpu, 0, 0); kvmppc_mmu_flush_segments(vcpu); } map->host_vsid = vcpu_book3s->vsid_next++; map->guest_vsid = gvsid; map->valid = true; return map; } static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) { int i; int max_slb_size = 64; int found_inval = -1; int r; if (!get_paca()->kvm_slb_max) get_paca()->kvm_slb_max = 1; /* Are we overwriting? */ for (i = 1; i < get_paca()->kvm_slb_max; i++) { if (!(get_paca()->kvm_slb[i].esid & SLB_ESID_V)) found_inval = i; else if ((get_paca()->kvm_slb[i].esid & ESID_MASK) == esid) return i; } /* Found a spare entry that was invalidated before */ if (found_inval > 0) return found_inval; /* No spare invalid entry, so create one */ if (mmu_slb_size < 64) max_slb_size = mmu_slb_size; /* Overflowing -> purge */ if ((get_paca()->kvm_slb_max) == max_slb_size) kvmppc_mmu_flush_segments(vcpu); r = get_paca()->kvm_slb_max; get_paca()->kvm_slb_max++; return r; } int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) { u64 esid = eaddr >> SID_SHIFT; u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; u64 slb_vsid = SLB_VSID_USER; u64 gvsid; int slb_index; struct kvmppc_sid_map *map; slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { /* Invalidate an entry */ get_paca()->kvm_slb[slb_index].esid = 0; return -ENOENT; } map = find_sid_vsid(vcpu, gvsid); if (!map) map = create_sid_map(vcpu, gvsid); map->guest_esid = esid; slb_vsid |= (map->host_vsid << 12); slb_vsid &= ~SLB_VSID_KP; slb_esid |= slb_index; get_paca()->kvm_slb[slb_index].esid = slb_esid; get_paca()->kvm_slb[slb_index].vsid = slb_vsid; dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid, slb_esid); return 0; } void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) { get_paca()->kvm_slb_max = 1; get_paca()->kvm_slb[0].esid = 0; } void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) { kvmppc_mmu_pte_flush(vcpu, 0, 0); }