/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1994 - 1997, 99, 2000, 06, 07 Ralf Baechle (ralf@linux-mips.org) * Copyright (c) 1999, 2000 Silicon Graphics, Inc. */ #ifndef _ASM_BITOPS_H #define _ASM_BITOPS_H #ifndef _LINUX_BITOPS_H #error only can be included directly #endif #include #include #include #include #include #include /* sigh ... */ #include #include #include #if _MIPS_SZLONG == 32 #define SZLONG_LOG 5 #define SZLONG_MASK 31UL #define __LL "ll " #define __SC "sc " #define __INS "ins " #define __EXT "ext " #elif _MIPS_SZLONG == 64 #define SZLONG_LOG 6 #define SZLONG_MASK 63UL #define __LL "lld " #define __SC "scd " #define __INS "dins " #define __EXT "dext " #endif /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() smp_llsc_mb() #define smp_mb__after_clear_bit() smp_llsc_mb() /* * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned short bit = nr & SZLONG_MASK; unsigned long temp; if (kernel_uses_llsc && R10000_LLSC_WAR) { __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # set_bit \n" " or %0, %2 \n" " " __SC "%0, %1 \n" " beqzl %0, 1b \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m) : "ir" (1UL << bit), "m" (*m)); #ifdef CONFIG_CPU_MIPSR2 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) { __asm__ __volatile__( "1: " __LL "%0, %1 # set_bit \n" " " __INS "%0, %4, %2, 1 \n" " " __SC "%0, %1 \n" " beqz %0, 2f \n" " .subsection 2 \n" "2: b 1b \n" " .previous \n" : "=&r" (temp), "=m" (*m) : "ir" (bit), "m" (*m), "r" (~0)); #endif /* CONFIG_CPU_MIPSR2 */ } else if (kernel_uses_llsc) { __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # set_bit \n" " or %0, %2 \n" " " __SC "%0, %1 \n" " beqz %0, 2f \n" " .subsection 2 \n" "2: b 1b \n" " .previous \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m) : "ir" (1UL << bit), "m" (*m)); } else { volatile unsigned long *a = addr; unsigned long mask; unsigned long flags; a += nr >> SZLONG_LOG; mask = 1UL << bit; raw_local_irq_save(flags); *a |= mask; raw_local_irq_restore(flags); } } /* * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ static inline void clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned short bit = nr & SZLONG_MASK; unsigned long temp; if (kernel_uses_llsc && R10000_LLSC_WAR) { __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # clear_bit \n" " and %0, %2 \n" " " __SC "%0, %1 \n" " beqzl %0, 1b \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m) : "ir" (~(1UL << bit)), "m" (*m)); #ifdef CONFIG_CPU_MIPSR2 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) { __asm__ __volatile__( "1: " __LL "%0, %1 # clear_bit \n" " " __INS "%0, $0, %2, 1 \n" " " __SC "%0, %1 \n" " beqz %0, 2f \n" " .subsection 2 \n" "2: b 1b \n" " .previous \n" : "=&r" (temp), "=m" (*m) : "ir" (bit), "m" (*m)); #endif /* CONFIG_CPU_MIPSR2 */ } else if (kernel_uses_llsc) { __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # clear_bit \n" " and %0, %2 \n" " " __SC "%0, %1 \n" " beqz %0, 2f \n" " .subsection 2 \n" "2: b 1b \n" " .previous \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m) : "ir" (~(1UL << bit)), "m" (*m)); } else { volatile unsigned long *a = addr; unsigned long mask; unsigned long flags; a += nr >> SZLONG_LOG; mask = 1UL << bit; raw_local_irq_save(flags); *a &= ~mask; raw_local_irq_restore(flags); } } /* * clear_bit_unlock - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and implies release semantics before the memory * operation. It can be used for an unlock. */ static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr) { smp_mb__before_clear_bit(); clear_bit(nr, addr); } /* * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned short bit = nr & SZLONG_MASK; if (kernel_uses_llsc && R10000_LLSC_WAR) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # change_bit \n" " xor %0, %2 \n" " " __SC "%0, %1 \n" " beqzl %0, 1b \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m) : "ir" (1UL << bit), "m" (*m)); } else if (kernel_uses_llsc) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # change_bit \n" " xor %0, %2 \n" " " __SC "%0, %1 \n" " beqz %0, 2f \n" " .subsection 2 \n" "2: b 1b \n" " .previous \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m) : "ir" (1UL << bit), "m" (*m)); } else { volatile unsigned long *a = addr; unsigned long mask; unsigned long flags; a += nr >> SZLONG_LOG; mask = 1UL << bit; raw_local_irq_save(flags); *a ^= mask; raw_local_irq_restore(flags); } } /* * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned short bit = nr & SZLONG_MASK; unsigned long res; smp_llsc_mb(); if (kernel_uses_llsc && R10000_LLSC_WAR) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # test_and_set_bit \n" " or %2, %0, %3 \n" " " __SC "%2, %1 \n" " beqzl %2, 1b \n" " and %2, %0, %3 \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); } else if (kernel_uses_llsc) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set push \n" " .set noreorder \n" " .set mips3 \n" "1: " __LL "%0, %1 # test_and_set_bit \n" " or %2, %0, %3 \n" " " __SC "%2, %1 \n" " beqz %2, 2f \n" " and %2, %0, %3 \n" " .subsection 2 \n" "2: b 1b \n" " nop \n" " .previous \n" " .set pop \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); } else { volatile unsigned long *a = addr; unsigned long mask; unsigned long flags; a += nr >> SZLONG_LOG; mask = 1UL << bit; raw_local_irq_save(flags); res = (mask & *a); *a |= mask; raw_local_irq_restore(flags); } smp_llsc_mb(); return res != 0; } /* * test_and_set_bit_lock - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and implies acquire ordering semantics * after the memory operation. */ static inline int test_and_set_bit_lock(unsigned long nr, volatile unsigned long *addr) { unsigned short bit = nr & SZLONG_MASK; unsigned long res; if (kernel_uses_llsc && R10000_LLSC_WAR) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # test_and_set_bit \n" " or %2, %0, %3 \n" " " __SC "%2, %1 \n" " beqzl %2, 1b \n" " and %2, %0, %3 \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); } else if (kernel_uses_llsc) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set push \n" " .set noreorder \n" " .set mips3 \n" "1: " __LL "%0, %1 # test_and_set_bit \n" " or %2, %0, %3 \n" " " __SC "%2, %1 \n" " beqz %2, 2f \n" " and %2, %0, %3 \n" " .subsection 2 \n" "2: b 1b \n" " nop \n" " .previous \n" " .set pop \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); } else { volatile unsigned long *a = addr; unsigned long mask; unsigned long flags; a += nr >> SZLONG_LOG; mask = 1UL << bit; raw_local_irq_save(flags); res = (mask & *a); *a |= mask; raw_local_irq_restore(flags); } smp_llsc_mb(); return res != 0; } /* * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned short bit = nr & SZLONG_MASK; unsigned long res; smp_llsc_mb(); if (kernel_uses_llsc && R10000_LLSC_WAR) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # test_and_clear_bit \n" " or %2, %0, %3 \n" " xor %2, %3 \n" " " __SC "%2, %1 \n" " beqzl %2, 1b \n" " and %2, %0, %3 \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); #ifdef CONFIG_CPU_MIPSR2 } else if (kernel_uses_llsc && __builtin_constant_p(nr)) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( "1: " __LL "%0, %1 # test_and_clear_bit \n" " " __EXT "%2, %0, %3, 1 \n" " " __INS "%0, $0, %3, 1 \n" " " __SC "%0, %1 \n" " beqz %0, 2f \n" " .subsection 2 \n" "2: b 1b \n" " .previous \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "ir" (bit), "m" (*m) : "memory"); #endif } else if (kernel_uses_llsc) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set push \n" " .set noreorder \n" " .set mips3 \n" "1: " __LL "%0, %1 # test_and_clear_bit \n" " or %2, %0, %3 \n" " xor %2, %3 \n" " " __SC "%2, %1 \n" " beqz %2, 2f \n" " and %2, %0, %3 \n" " .subsection 2 \n" "2: b 1b \n" " nop \n" " .previous \n" " .set pop \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); } else { volatile unsigned long *a = addr; unsigned long mask; unsigned long flags; a += nr >> SZLONG_LOG; mask = 1UL << bit; raw_local_irq_save(flags); res = (mask & *a); *a &= ~mask; raw_local_irq_restore(flags); } smp_llsc_mb(); return res != 0; } /* * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned short bit = nr & SZLONG_MASK; unsigned long res; smp_llsc_mb(); if (kernel_uses_llsc && R10000_LLSC_WAR) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set mips3 \n" "1: " __LL "%0, %1 # test_and_change_bit \n" " xor %2, %0, %3 \n" " " __SC "%2, %1 \n" " beqzl %2, 1b \n" " and %2, %0, %3 \n" " .set mips0 \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); } else if (kernel_uses_llsc) { unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); unsigned long temp; __asm__ __volatile__( " .set push \n" " .set noreorder \n" " .set mips3 \n" "1: " __LL "%0, %1 # test_and_change_bit \n" " xor %2, %0, %3 \n" " " __SC "\t%2, %1 \n" " beqz %2, 2f \n" " and %2, %0, %3 \n" " .subsection 2 \n" "2: b 1b \n" " nop \n" " .previous \n" " .set pop \n" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << bit), "m" (*m) : "memory"); } else { volatile unsigned long *a = addr; unsigned long mask; unsigned long flags; a += nr >> SZLONG_LOG; mask = 1UL << bit; raw_local_irq_save(flags); res = (mask & *a); *a ^= mask; raw_local_irq_restore(flags); } smp_llsc_mb(); return res != 0; } #include /* * __clear_bit_unlock - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * __clear_bit() is non-atomic and implies release semantics before the memory * operation. It can be used for an unlock if no other CPUs can concurrently * modify other bits in the word. */ static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr) { smp_mb(); __clear_bit(nr, addr); } /* * Return the bit position (0..63) of the most significant 1 bit in a word * Returns -1 if no 1 bit exists */ static inline unsigned long __fls(unsigned long word) { int num; if (BITS_PER_LONG == 32 && __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) { __asm__( " .set push \n" " .set mips32 \n" " clz %0, %1 \n" " .set pop \n" : "=r" (num) : "r" (word)); return 31 - num; } if (BITS_PER_LONG == 64 && __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) { __asm__( " .set push \n" " .set mips64 \n" " dclz %0, %1 \n" " .set pop \n" : "=r" (num) : "r" (word)); return 63 - num; } num = BITS_PER_LONG - 1; #if BITS_PER_LONG == 64 if (!(word & (~0ul << 32))) { num -= 32; word <<= 32; } #endif if (!(word & (~0ul << (BITS_PER_LONG-16)))) { num -= 16; word <<= 16; } if (!(word & (~0ul << (BITS_PER_LONG-8)))) { num -= 8; word <<= 8; } if (!(word & (~0ul << (BITS_PER_LONG-4)))) { num -= 4; word <<= 4; } if (!(word & (~0ul << (BITS_PER_LONG-2)))) { num -= 2; word <<= 2; } if (!(word & (~0ul << (BITS_PER_LONG-1)))) num -= 1; return num; } /* * __ffs - find first bit in word. * @word: The word to search * * Returns 0..SZLONG-1 * Undefined if no bit exists, so code should check against 0 first. */ static inline unsigned long __ffs(unsigned long word) { return __fls(word & -word); } /* * fls - find last bit set. * @word: The word to search * * This is defined the same way as ffs. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static inline int fls(int x) { int r; if (__builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) { __asm__("clz %0, %1" : "=r" (x) : "r" (x)); return 32 - x; } r = 32; if (!x) return 0; if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return r; } #include /* * ffs - find first bit set. * @word: The word to search * * This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static inline int ffs(int word) { if (!word) return 0; return fls(word & -word); } #include #include #ifdef __KERNEL__ #include #include #include #include #include #endif /* __KERNEL__ */ #endif /* _ASM_BITOPS_H */