/* * Optimized version of the strlen_user() function * * Inputs: * in0 address of buffer * * Outputs: * ret0 0 in case of fault, strlen(buffer)+1 otherwise * * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co * David Mosberger-Tang * Stephane Eranian * * 01/19/99 S.Eranian heavily enhanced version (see details below) * 09/24/99 S.Eranian added speculation recovery code */ #include // // int strlen_user(char *) // ------------------------ // Returns: // - length of string + 1 // - 0 in case an exception is raised // // This is an enhanced version of the basic strlen_user. it includes a // combination of compute zero index (czx), parallel comparisons, speculative // loads and loop unroll using rotating registers. // // General Ideas about the algorithm: // The goal is to look at the string in chunks of 8 bytes. // so we need to do a few extra checks at the beginning because the // string may not be 8-byte aligned. In this case we load the 8byte // quantity which includes the start of the string and mask the unused // bytes with 0xff to avoid confusing czx. // We use speculative loads and software pipelining to hide memory // latency and do read ahead safely. This way we defer any exception. // // Because we don't want the kernel to be relying on particular // settings of the DCR register, we provide recovery code in case // speculation fails. The recovery code is going to "redo" the work using // only normal loads. If we still get a fault then we return an // error (ret0=0). Otherwise we return the strlen+1 as usual. // The fact that speculation may fail can be caused, for instance, by // the DCR.dm bit being set. In this case TLB misses are deferred, i.e., // a NaT bit will be set if the translation is not present. The normal // load, on the other hand, will cause the translation to be inserted // if the mapping exists. // // It should be noted that we execute recovery code only when we need // to use the data that has been speculatively loaded: we don't execute // recovery code on pure read ahead data. // // Remarks: // - the cmp r0,r0 is used as a fast way to initialize a predicate // register to 1. This is required to make sure that we get the parallel // compare correct. // // - we don't use the epilogue counter to exit the loop but we need to set // it to zero beforehand. // // - after the loop we must test for Nat values because neither the // czx nor cmp instruction raise a NaT consumption fault. We must be // careful not to look too far for a Nat for which we don't care. // For instance we don't need to look at a NaT in val2 if the zero byte // was in val1. // // - Clearly performance tuning is required. // #define saved_pfs r11 #define tmp r10 #define base r16 #define orig r17 #define saved_pr r18 #define src r19 #define mask r20 #define val r21 #define val1 r22 #define val2 r23 GLOBAL_ENTRY(__strlen_user) .prologue .save ar.pfs, saved_pfs alloc saved_pfs=ar.pfs,11,0,0,8 .rotr v[2], w[2] // declares our 4 aliases extr.u tmp=in0,0,3 // tmp=least significant 3 bits mov orig=in0 // keep trackof initial byte address dep src=0,in0,0,3 // src=8byte-aligned in0 address .save pr, saved_pr mov saved_pr=pr // preserve predicates (rotation) ;; .body ld8.s v[1]=[src],8 // load the initial 8bytes (must speculate) shl tmp=tmp,3 // multiply by 8bits/byte mov mask=-1 // our mask ;; ld8.s w[1]=[src],8 // load next 8 bytes in 2nd pipeline cmp.eq p6,p0=r0,r0 // sets p6 (required because of // cmp.and) sub tmp=64,tmp // how many bits to shift our mask on the right ;; shr.u mask=mask,tmp // zero enough bits to hold v[1] valuable part mov ar.ec=r0 // clear epilogue counter (saved in ar.pfs) ;; add base=-16,src // keep track of aligned base chk.s v[1], .recover // if already NaT, then directly skip to recover or v[1]=v[1],mask // now we have a safe initial byte pattern ;; 1: ld8.s v[0]=[src],8 // speculatively load next czx1.r val1=v[1] // search 0 byte from right czx1.r val2=w[1] // search 0 byte from right following 8bytes ;; ld8.s w[0]=[src],8 // speculatively load next to next cmp.eq.and p6,p0=8,val1 // p6 = p6 and val1==8 cmp.eq.and p6,p0=8,val2 // p6 = p6 and mask==8 (p6) br.wtop.dptk.few 1b // loop until p6 == 0 ;; // // We must return try the recovery code iff // val1_is_nat || (val1==8 && val2_is_nat) // // XXX Fixme // - there must be a better way of doing the test // cmp.eq p8,p9=8,val1 // p6 = val1 had zero (disambiguate) tnat.nz p6,p7=val1 // test NaT on val1 (p6) br.cond.spnt .recover // jump to recovery if val1 is NaT ;; // // if we come here p7 is true, i.e., initialized for // cmp // cmp.eq.and p7,p0=8,val1// val1==8? tnat.nz.and p7,p0=val2 // test NaT if val2 (p7) br.cond.spnt .recover // jump to recovery if val2 is NaT ;; (p8) mov val1=val2 // val2 contains the value (p8) adds src=-16,src // correct position when 3 ahead (p9) adds src=-24,src // correct position when 4 ahead ;; sub ret0=src,orig // distance from origin sub tmp=7,val1 // 7=8-1 because this strlen returns strlen+1 mov pr=saved_pr,0xffffffffffff0000 ;; sub ret0=ret0,tmp // length=now - back -1 mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what br.ret.sptk.many rp // end of normal execution // // Outlined recovery code when speculation failed // // This time we don't use speculation and rely on the normal exception // mechanism. that's why the loop is not as good as the previous one // because read ahead is not possible // // XXX Fixme // - today we restart from the beginning of the string instead // of trying to continue where we left off. // .recover: EX(.Lexit1, ld8 val=[base],8) // load the initial bytes ;; or val=val,mask // remask first bytes cmp.eq p0,p6=r0,r0 // nullify first ld8 in loop ;; // // ar.ec is still zero here // 2: EX(.Lexit1, (p6) ld8 val=[base],8) ;; czx1.r val1=val // search 0 byte from right ;; cmp.eq p6,p0=8,val1 // val1==8 ? (p6) br.wtop.dptk.few 2b // loop until p6 == 0 ;; sub ret0=base,orig // distance from base sub tmp=7,val1 // 7=8-1 because this strlen returns strlen+1 mov pr=saved_pr,0xffffffffffff0000 ;; sub ret0=ret0,tmp // length=now - back -1 mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what br.ret.sptk.many rp // end of successful recovery code // // We failed even on the normal load (called from exception handler) // .Lexit1: mov ret0=0 mov pr=saved_pr,0xffffffffffff0000 mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what br.ret.sptk.many rp END(__strlen_user)