#ifndef _ASM_IA64_SAL_H #define _ASM_IA64_SAL_H /* * System Abstraction Layer definitions. * * This is based on version 2.5 of the manual "IA-64 System * Abstraction Layer". * * Copyright (C) 2001 Intel * Copyright (C) 2002 Jenna Hall * Copyright (C) 2001 Fred Lewis * Copyright (C) 1998, 1999, 2001, 2003 Hewlett-Packard Co * David Mosberger-Tang * Copyright (C) 1999 Srinivasa Prasad Thirumalachar * * 02/01/04 J. Hall Updated Error Record Structures to conform to July 2001 * revision of the SAL spec. * 01/01/03 fvlewis Updated Error Record Structures to conform with Nov. 2000 * revision of the SAL spec. * 99/09/29 davidm Updated for SAL 2.6. * 00/03/29 cfleck Updated SAL Error Logging info for processor (SAL 2.6) * (plus examples of platform error info structures from smariset @ Intel) */ #define IA64_SAL_PLATFORM_FEATURE_BUS_LOCK_BIT 0 #define IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT_BIT 1 #define IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT_BIT 2 #define IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT_BIT 3 #define IA64_SAL_PLATFORM_FEATURE_BUS_LOCK (1< #include #include #include #include #include extern spinlock_t sal_lock; /* SAL spec _requires_ eight args for each call. */ #define __IA64_FW_CALL(entry,result,a0,a1,a2,a3,a4,a5,a6,a7) \ result = (*entry)(a0,a1,a2,a3,a4,a5,a6,a7) # define IA64_FW_CALL(entry,result,args...) do { \ unsigned long __ia64_sc_flags; \ struct ia64_fpreg __ia64_sc_fr[6]; \ ia64_save_scratch_fpregs(__ia64_sc_fr); \ spin_lock_irqsave(&sal_lock, __ia64_sc_flags); \ __IA64_FW_CALL(entry, result, args); \ spin_unlock_irqrestore(&sal_lock, __ia64_sc_flags); \ ia64_load_scratch_fpregs(__ia64_sc_fr); \ } while (0) # define SAL_CALL(result,args...) \ IA64_FW_CALL(ia64_sal, result, args); # define SAL_CALL_NOLOCK(result,args...) do { \ unsigned long __ia64_scn_flags; \ struct ia64_fpreg __ia64_scn_fr[6]; \ ia64_save_scratch_fpregs(__ia64_scn_fr); \ local_irq_save(__ia64_scn_flags); \ __IA64_FW_CALL(ia64_sal, result, args); \ local_irq_restore(__ia64_scn_flags); \ ia64_load_scratch_fpregs(__ia64_scn_fr); \ } while (0) # define SAL_CALL_REENTRANT(result,args...) do { \ struct ia64_fpreg __ia64_scs_fr[6]; \ ia64_save_scratch_fpregs(__ia64_scs_fr); \ preempt_disable(); \ __IA64_FW_CALL(ia64_sal, result, args); \ preempt_enable(); \ ia64_load_scratch_fpregs(__ia64_scs_fr); \ } while (0) #define SAL_SET_VECTORS 0x01000000 #define SAL_GET_STATE_INFO 0x01000001 #define SAL_GET_STATE_INFO_SIZE 0x01000002 #define SAL_CLEAR_STATE_INFO 0x01000003 #define SAL_MC_RENDEZ 0x01000004 #define SAL_MC_SET_PARAMS 0x01000005 #define SAL_REGISTER_PHYSICAL_ADDR 0x01000006 #define SAL_CACHE_FLUSH 0x01000008 #define SAL_CACHE_INIT 0x01000009 #define SAL_PCI_CONFIG_READ 0x01000010 #define SAL_PCI_CONFIG_WRITE 0x01000011 #define SAL_FREQ_BASE 0x01000012 #define SAL_PHYSICAL_ID_INFO 0x01000013 #define SAL_UPDATE_PAL 0x01000020 struct ia64_sal_retval { /* * A zero status value indicates call completed without error. * A negative status value indicates reason of call failure. * A positive status value indicates success but an * informational value should be printed (e.g., "reboot for * change to take effect"). */ long status; unsigned long v0; unsigned long v1; unsigned long v2; }; typedef struct ia64_sal_retval (*ia64_sal_handler) (u64, ...); enum { SAL_FREQ_BASE_PLATFORM = 0, SAL_FREQ_BASE_INTERVAL_TIMER = 1, SAL_FREQ_BASE_REALTIME_CLOCK = 2 }; /* * The SAL system table is followed by a variable number of variable * length descriptors. The structure of these descriptors follows * below. * The defininition follows SAL specs from July 2000 */ struct ia64_sal_systab { u8 signature[4]; /* should be "SST_" */ u32 size; /* size of this table in bytes */ u8 sal_rev_minor; u8 sal_rev_major; u16 entry_count; /* # of entries in variable portion */ u8 checksum; u8 reserved1[7]; u8 sal_a_rev_minor; u8 sal_a_rev_major; u8 sal_b_rev_minor; u8 sal_b_rev_major; /* oem_id & product_id: terminating NUL is missing if string is exactly 32 bytes long. */ u8 oem_id[32]; u8 product_id[32]; /* ASCII product id */ u8 reserved2[8]; }; enum sal_systab_entry_type { SAL_DESC_ENTRY_POINT = 0, SAL_DESC_MEMORY = 1, SAL_DESC_PLATFORM_FEATURE = 2, SAL_DESC_TR = 3, SAL_DESC_PTC = 4, SAL_DESC_AP_WAKEUP = 5 }; /* * Entry type: Size: * 0 48 * 1 32 * 2 16 * 3 32 * 4 16 * 5 16 */ #define SAL_DESC_SIZE(type) "\060\040\020\040\020\020"[(unsigned) type] typedef struct ia64_sal_desc_entry_point { u8 type; u8 reserved1[7]; u64 pal_proc; u64 sal_proc; u64 gp; u8 reserved2[16]; }ia64_sal_desc_entry_point_t; typedef struct ia64_sal_desc_memory { u8 type; u8 used_by_sal; /* needs to be mapped for SAL? */ u8 mem_attr; /* current memory attribute setting */ u8 access_rights; /* access rights set up by SAL */ u8 mem_attr_mask; /* mask of supported memory attributes */ u8 reserved1; u8 mem_type; /* memory type */ u8 mem_usage; /* memory usage */ u64 addr; /* physical address of memory */ u32 length; /* length (multiple of 4KB pages) */ u32 reserved2; u8 oem_reserved[8]; } ia64_sal_desc_memory_t; typedef struct ia64_sal_desc_platform_feature { u8 type; u8 feature_mask; u8 reserved1[14]; } ia64_sal_desc_platform_feature_t; typedef struct ia64_sal_desc_tr { u8 type; u8 tr_type; /* 0 == instruction, 1 == data */ u8 regnum; /* translation register number */ u8 reserved1[5]; u64 addr; /* virtual address of area covered */ u64 page_size; /* encoded page size */ u8 reserved2[8]; } ia64_sal_desc_tr_t; typedef struct ia64_sal_desc_ptc { u8 type; u8 reserved1[3]; u32 num_domains; /* # of coherence domains */ u64 domain_info; /* physical address of domain info table */ } ia64_sal_desc_ptc_t; typedef struct ia64_sal_ptc_domain_info { u64 proc_count; /* number of processors in domain */ u64 proc_list; /* physical address of LID array */ } ia64_sal_ptc_domain_info_t; typedef struct ia64_sal_ptc_domain_proc_entry { u64 id : 8; /* id of processor */ u64 eid : 8; /* eid of processor */ } ia64_sal_ptc_domain_proc_entry_t; #define IA64_SAL_AP_EXTERNAL_INT 0 typedef struct ia64_sal_desc_ap_wakeup { u8 type; u8 mechanism; /* 0 == external interrupt */ u8 reserved1[6]; u64 vector; /* interrupt vector in range 0x10-0xff */ } ia64_sal_desc_ap_wakeup_t ; extern ia64_sal_handler ia64_sal; extern struct ia64_sal_desc_ptc *ia64_ptc_domain_info; extern unsigned short sal_revision; /* supported SAL spec revision */ extern unsigned short sal_version; /* SAL version; OEM dependent */ #define SAL_VERSION_CODE(major, minor) ((bin2bcd(major) << 8) | bin2bcd(minor)) extern const char *ia64_sal_strerror (long status); extern void ia64_sal_init (struct ia64_sal_systab *sal_systab); /* SAL information type encodings */ enum { SAL_INFO_TYPE_MCA = 0, /* Machine check abort information */ SAL_INFO_TYPE_INIT = 1, /* Init information */ SAL_INFO_TYPE_CMC = 2, /* Corrected machine check information */ SAL_INFO_TYPE_CPE = 3 /* Corrected platform error information */ }; /* Encodings for machine check parameter types */ enum { SAL_MC_PARAM_RENDEZ_INT = 1, /* Rendezvous interrupt */ SAL_MC_PARAM_RENDEZ_WAKEUP = 2, /* Wakeup */ SAL_MC_PARAM_CPE_INT = 3 /* Corrected Platform Error Int */ }; /* Encodings for rendezvous mechanisms */ enum { SAL_MC_PARAM_MECHANISM_INT = 1, /* Use interrupt */ SAL_MC_PARAM_MECHANISM_MEM = 2 /* Use memory synchronization variable*/ }; /* Encodings for vectors which can be registered by the OS with SAL */ enum { SAL_VECTOR_OS_MCA = 0, SAL_VECTOR_OS_INIT = 1, SAL_VECTOR_OS_BOOT_RENDEZ = 2 }; /* Encodings for mca_opt parameter sent to SAL_MC_SET_PARAMS */ #define SAL_MC_PARAM_RZ_ALWAYS 0x1 #define SAL_MC_PARAM_BINIT_ESCALATE 0x10 /* * Definition of the SAL Error Log from the SAL spec */ /* SAL Error Record Section GUID Definitions */ #define SAL_PROC_DEV_ERR_SECT_GUID \ EFI_GUID(0xe429faf1, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_MEM_DEV_ERR_SECT_GUID \ EFI_GUID(0xe429faf2, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_SEL_DEV_ERR_SECT_GUID \ EFI_GUID(0xe429faf3, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_PCI_BUS_ERR_SECT_GUID \ EFI_GUID(0xe429faf4, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID \ EFI_GUID(0xe429faf5, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_PCI_COMP_ERR_SECT_GUID \ EFI_GUID(0xe429faf6, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_SPECIFIC_ERR_SECT_GUID \ EFI_GUID(0xe429faf7, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_HOST_CTLR_ERR_SECT_GUID \ EFI_GUID(0xe429faf8, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define SAL_PLAT_BUS_ERR_SECT_GUID \ EFI_GUID(0xe429faf9, 0x3cb7, 0x11d4, 0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81) #define PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID \ EFI_GUID(0x6cb0a200, 0x893a, 0x11da, 0x96, 0xd2, 0x0, 0x10, 0x83, 0xff, \ 0xca, 0x4d) #define MAX_CACHE_ERRORS 6 #define MAX_TLB_ERRORS 6 #define MAX_BUS_ERRORS 1 /* Definition of version according to SAL spec for logging purposes */ typedef struct sal_log_revision { u8 minor; /* BCD (0..99) */ u8 major; /* BCD (0..99) */ } sal_log_revision_t; /* Definition of timestamp according to SAL spec for logging purposes */ typedef struct sal_log_timestamp { u8 slh_second; /* Second (0..59) */ u8 slh_minute; /* Minute (0..59) */ u8 slh_hour; /* Hour (0..23) */ u8 slh_reserved; u8 slh_day; /* Day (1..31) */ u8 slh_month; /* Month (1..12) */ u8 slh_year; /* Year (00..99) */ u8 slh_century; /* Century (19, 20, 21, ...) */ } sal_log_timestamp_t; /* Definition of log record header structures */ typedef struct sal_log_record_header { u64 id; /* Unique monotonically increasing ID */ sal_log_revision_t revision; /* Major and Minor revision of header */ u8 severity; /* Error Severity */ u8 validation_bits; /* 0: platform_guid, 1: !timestamp */ u32 len; /* Length of this error log in bytes */ sal_log_timestamp_t timestamp; /* Timestamp */ efi_guid_t platform_guid; /* Unique OEM Platform ID */ } sal_log_record_header_t; #define sal_log_severity_recoverable 0 #define sal_log_severity_fatal 1 #define sal_log_severity_corrected 2 /* * Error Recovery Info (ERI) bit decode. From SAL Spec section B.2.2 Table B-3 * Error Section Error_Recovery_Info Field Definition. */ #define ERI_NOT_VALID 0x0 /* Error Recovery Field is not valid */ #define ERI_NOT_ACCESSIBLE 0x30 /* Resource not accessible */ #define ERI_CONTAINMENT_WARN 0x22 /* Corrupt data propagated */ #define ERI_UNCORRECTED_ERROR 0x20 /* Uncorrected error */ #define ERI_COMPONENT_RESET 0x24 /* Component must be reset */ #define ERI_CORR_ERROR_LOG 0x21 /* Corrected error, needs logging */ #define ERI_CORR_ERROR_THRESH 0x29 /* Corrected error threshold exceeded */ /* Definition of log section header structures */ typedef struct sal_log_sec_header { efi_guid_t guid; /* Unique Section ID */ sal_log_revision_t revision; /* Major and Minor revision of Section */ u8 error_recovery_info; /* Platform error recovery status */ u8 reserved; u32 len; /* Section length */ } sal_log_section_hdr_t; typedef struct sal_log_mod_error_info { struct { u64 check_info : 1, requestor_identifier : 1, responder_identifier : 1, target_identifier : 1, precise_ip : 1, reserved : 59; } valid; u64 check_info; u64 requestor_identifier; u64 responder_identifier; u64 target_identifier; u64 precise_ip; } sal_log_mod_error_info_t; typedef struct sal_processor_static_info { struct { u64 minstate : 1, br : 1, cr : 1, ar : 1, rr : 1, fr : 1, reserved : 58; } valid; pal_min_state_area_t min_state_area; u64 br[8]; u64 cr[128]; u64 ar[128]; u64 rr[8]; struct ia64_fpreg __attribute__ ((packed)) fr[128]; } sal_processor_static_info_t; struct sal_cpuid_info { u64 regs[5]; u64 reserved; }; typedef struct sal_log_processor_info { sal_log_section_hdr_t header; struct { u64 proc_error_map : 1, proc_state_param : 1, proc_cr_lid : 1, psi_static_struct : 1, num_cache_check : 4, num_tlb_check : 4, num_bus_check : 4, num_reg_file_check : 4, num_ms_check : 4, cpuid_info : 1, reserved1 : 39; } valid; u64 proc_error_map; u64 proc_state_parameter; u64 proc_cr_lid; /* * The rest of this structure consists of variable-length arrays, which can't be * expressed in C. */ sal_log_mod_error_info_t info[0]; /* * This is what the rest looked like if C supported variable-length arrays: * * sal_log_mod_error_info_t cache_check_info[.valid.num_cache_check]; * sal_log_mod_error_info_t tlb_check_info[.valid.num_tlb_check]; * sal_log_mod_error_info_t bus_check_info[.valid.num_bus_check]; * sal_log_mod_error_info_t reg_file_check_info[.valid.num_reg_file_check]; * sal_log_mod_error_info_t ms_check_info[.valid.num_ms_check]; * struct sal_cpuid_info cpuid_info; * sal_processor_static_info_t processor_static_info; */ } sal_log_processor_info_t; /* Given a sal_log_processor_info_t pointer, return a pointer to the processor_static_info: */ #define SAL_LPI_PSI_INFO(l) \ ({ sal_log_processor_info_t *_l = (l); \ ((sal_processor_static_info_t *) \ ((char *) _l->info + ((_l->valid.num_cache_check + _l->valid.num_tlb_check \ + _l->valid.num_bus_check + _l->valid.num_reg_file_check \ + _l->valid.num_ms_check) * sizeof(sal_log_mod_error_info_t) \ + sizeof(struct sal_cpuid_info)))); \ }) /* platform error log structures */ typedef struct sal_log_mem_dev_err_info { sal_log_section_hdr_t header; struct { u64 error_status : 1, physical_addr : 1, addr_mask : 1, node : 1, card : 1, module : 1, bank : 1, device : 1, row : 1, column : 1, bit_position : 1, requestor_id : 1, responder_id : 1, target_id : 1, bus_spec_data : 1, oem_id : 1, oem_data : 1, reserved : 47; } valid; u64 error_status; u64 physical_addr; u64 addr_mask; u16 node; u16 card; u16 module; u16 bank; u16 device; u16 row; u16 column; u16 bit_position; u64 requestor_id; u64 responder_id; u64 target_id; u64 bus_spec_data; u8 oem_id[16]; u8 oem_data[1]; /* Variable length data */ } sal_log_mem_dev_err_info_t; typedef struct sal_log_sel_dev_err_info { sal_log_section_hdr_t header; struct { u64 record_id : 1, record_type : 1, generator_id : 1, evm_rev : 1, sensor_type : 1, sensor_num : 1, event_dir : 1, event_data1 : 1, event_data2 : 1, event_data3 : 1, reserved : 54; } valid; u16 record_id; u8 record_type; u8 timestamp[4]; u16 generator_id; u8 evm_rev; u8 sensor_type; u8 sensor_num; u8 event_dir; u8 event_data1; u8 event_data2; u8 event_data3; } sal_log_sel_dev_err_info_t; typedef struct sal_log_pci_bus_err_info { sal_log_section_hdr_t header; struct { u64 err_status : 1, err_type : 1, bus_id : 1, bus_address : 1, bus_data : 1, bus_cmd : 1, requestor_id : 1, responder_id : 1, target_id : 1, oem_data : 1, reserved : 54; } valid; u64 err_status; u16 err_type; u16 bus_id; u32 reserved; u64 bus_address; u64 bus_data; u64 bus_cmd; u64 requestor_id; u64 responder_id; u64 target_id; u8 oem_data[1]; /* Variable length data */ } sal_log_pci_bus_err_info_t; typedef struct sal_log_smbios_dev_err_info { sal_log_section_hdr_t header; struct { u64 event_type : 1, length : 1, time_stamp : 1, data : 1, reserved1 : 60; } valid; u8 event_type; u8 length; u8 time_stamp[6]; u8 data[1]; /* data of variable length, length == slsmb_length */ } sal_log_smbios_dev_err_info_t; typedef struct sal_log_pci_comp_err_info { sal_log_section_hdr_t header; struct { u64 err_status : 1, comp_info : 1, num_mem_regs : 1, num_io_regs : 1, reg_data_pairs : 1, oem_data : 1, reserved : 58; } valid; u64 err_status; struct { u16 vendor_id; u16 device_id; u8 class_code[3]; u8 func_num; u8 dev_num; u8 bus_num; u8 seg_num; u8 reserved[5]; } comp_info; u32 num_mem_regs; u32 num_io_regs; u64 reg_data_pairs[1]; /* * array of address/data register pairs is num_mem_regs + num_io_regs elements * long. Each array element consists of a u64 address followed by a u64 data * value. The oem_data array immediately follows the reg_data_pairs array */ u8 oem_data[1]; /* Variable length data */ } sal_log_pci_comp_err_info_t; typedef struct sal_log_plat_specific_err_info { sal_log_section_hdr_t header; struct { u64 err_status : 1, guid : 1, oem_data : 1, reserved : 61; } valid; u64 err_status; efi_guid_t guid; u8 oem_data[1]; /* platform specific variable length data */ } sal_log_plat_specific_err_info_t; typedef struct sal_log_host_ctlr_err_info { sal_log_section_hdr_t header; struct { u64 err_status : 1, requestor_id : 1, responder_id : 1, target_id : 1, bus_spec_data : 1, oem_data : 1, reserved : 58; } valid; u64 err_status; u64 requestor_id; u64 responder_id; u64 target_id; u64 bus_spec_data; u8 oem_data[1]; /* Variable length OEM data */ } sal_log_host_ctlr_err_info_t; typedef struct sal_log_plat_bus_err_info { sal_log_section_hdr_t header; struct { u64 err_status : 1, requestor_id : 1, responder_id : 1, target_id : 1, bus_spec_data : 1, oem_data : 1, reserved : 58; } valid; u64 err_status; u64 requestor_id; u64 responder_id; u64 target_id; u64 bus_spec_data; u8 oem_data[1]; /* Variable length OEM data */ } sal_log_plat_bus_err_info_t; /* Overall platform error section structure */ typedef union sal_log_platform_err_info { sal_log_mem_dev_err_info_t mem_dev_err; sal_log_sel_dev_err_info_t sel_dev_err; sal_log_pci_bus_err_info_t pci_bus_err; sal_log_smbios_dev_err_info_t smbios_dev_err; sal_log_pci_comp_err_info_t pci_comp_err; sal_log_plat_specific_err_info_t plat_specific_err; sal_log_host_ctlr_err_info_t host_ctlr_err; sal_log_plat_bus_err_info_t plat_bus_err; } sal_log_platform_err_info_t; /* SAL log over-all, multi-section error record structure (processor+platform) */ typedef struct err_rec { sal_log_record_header_t sal_elog_header; sal_log_processor_info_t proc_err; sal_log_platform_err_info_t plat_err; u8 oem_data_pad[1024]; } ia64_err_rec_t; /* * Now define a couple of inline functions for improved type checking * and convenience. */ extern s64 ia64_sal_cache_flush (u64 cache_type); extern void __init check_sal_cache_flush (void); /* Initialize all the processor and platform level instruction and data caches */ static inline s64 ia64_sal_cache_init (void) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SAL_CACHE_INIT, 0, 0, 0, 0, 0, 0, 0); return isrv.status; } /* * Clear the processor and platform information logged by SAL with respect to the machine * state at the time of MCA's, INITs, CMCs, or CPEs. */ static inline s64 ia64_sal_clear_state_info (u64 sal_info_type) { struct ia64_sal_retval isrv; SAL_CALL_REENTRANT(isrv, SAL_CLEAR_STATE_INFO, sal_info_type, 0, 0, 0, 0, 0, 0); return isrv.status; } /* Get the processor and platform information logged by SAL with respect to the machine * state at the time of the MCAs, INITs, CMCs, or CPEs. */ static inline u64 ia64_sal_get_state_info (u64 sal_info_type, u64 *sal_info) { struct ia64_sal_retval isrv; SAL_CALL_REENTRANT(isrv, SAL_GET_STATE_INFO, sal_info_type, 0, sal_info, 0, 0, 0, 0); if (isrv.status) return 0; return isrv.v0; } /* * Get the maximum size of the information logged by SAL with respect to the machine state * at the time of MCAs, INITs, CMCs, or CPEs. */ static inline u64 ia64_sal_get_state_info_size (u64 sal_info_type) { struct ia64_sal_retval isrv; SAL_CALL_REENTRANT(isrv, SAL_GET_STATE_INFO_SIZE, sal_info_type, 0, 0, 0, 0, 0, 0); if (isrv.status) return 0; return isrv.v0; } /* * Causes the processor to go into a spin loop within SAL where SAL awaits a wakeup from * the monarch processor. Must not lock, because it will not return on any cpu until the * monarch processor sends a wake up. */ static inline s64 ia64_sal_mc_rendez (void) { struct ia64_sal_retval isrv; SAL_CALL_NOLOCK(isrv, SAL_MC_RENDEZ, 0, 0, 0, 0, 0, 0, 0); return isrv.status; } /* * Allow the OS to specify the interrupt number to be used by SAL to interrupt OS during * the machine check rendezvous sequence as well as the mechanism to wake up the * non-monarch processor at the end of machine check processing. * Returns the complete ia64_sal_retval because some calls return more than just a status * value. */ static inline struct ia64_sal_retval ia64_sal_mc_set_params (u64 param_type, u64 i_or_m, u64 i_or_m_val, u64 timeout, u64 rz_always) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SAL_MC_SET_PARAMS, param_type, i_or_m, i_or_m_val, timeout, rz_always, 0, 0); return isrv; } /* Read from PCI configuration space */ static inline s64 ia64_sal_pci_config_read (u64 pci_config_addr, int type, u64 size, u64 *value) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SAL_PCI_CONFIG_READ, pci_config_addr, size, type, 0, 0, 0, 0); if (value) *value = isrv.v0; return isrv.status; } /* Write to PCI configuration space */ static inline s64 ia64_sal_pci_config_write (u64 pci_config_addr, int type, u64 size, u64 value) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SAL_PCI_CONFIG_WRITE, pci_config_addr, size, value, type, 0, 0, 0); return isrv.status; } /* * Register physical addresses of locations needed by SAL when SAL procedures are invoked * in virtual mode. */ static inline s64 ia64_sal_register_physical_addr (u64 phys_entry, u64 phys_addr) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SAL_REGISTER_PHYSICAL_ADDR, phys_entry, phys_addr, 0, 0, 0, 0, 0); return isrv.status; } /* * Register software dependent code locations within SAL. These locations are handlers or * entry points where SAL will pass control for the specified event. These event handlers * are for the bott rendezvous, MCAs and INIT scenarios. */ static inline s64 ia64_sal_set_vectors (u64 vector_type, u64 handler_addr1, u64 gp1, u64 handler_len1, u64 handler_addr2, u64 gp2, u64 handler_len2) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SAL_SET_VECTORS, vector_type, handler_addr1, gp1, handler_len1, handler_addr2, gp2, handler_len2); return isrv.status; } /* Update the contents of PAL block in the non-volatile storage device */ static inline s64 ia64_sal_update_pal (u64 param_buf, u64 scratch_buf, u64 scratch_buf_size, u64 *error_code, u64 *scratch_buf_size_needed) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SAL_UPDATE_PAL, param_buf, scratch_buf, scratch_buf_size, 0, 0, 0, 0); if (error_code) *error_code = isrv.v0; if (scratch_buf_size_needed) *scratch_buf_size_needed = isrv.v1; return isrv.status; } /* Get physical processor die mapping in the platform. */ static inline s64 ia64_sal_physical_id_info(u16 *splid) { struct ia64_sal_retval isrv; if (sal_revision < SAL_VERSION_CODE(3,2)) return -1; SAL_CALL(isrv, SAL_PHYSICAL_ID_INFO, 0, 0, 0, 0, 0, 0, 0); if (splid) *splid = isrv.v0; return isrv.status; } extern unsigned long sal_platform_features; extern int (*salinfo_platform_oemdata)(const u8 *, u8 **, u64 *); struct sal_ret_values { long r8; long r9; long r10; long r11; }; #define IA64_SAL_OEMFUNC_MIN 0x02000000 #define IA64_SAL_OEMFUNC_MAX 0x03ffffff extern int ia64_sal_oemcall(struct ia64_sal_retval *, u64, u64, u64, u64, u64, u64, u64, u64); extern int ia64_sal_oemcall_nolock(struct ia64_sal_retval *, u64, u64, u64, u64, u64, u64, u64, u64); extern int ia64_sal_oemcall_reentrant(struct ia64_sal_retval *, u64, u64, u64, u64, u64, u64, u64, u64); extern long ia64_sal_freq_base (unsigned long which, unsigned long *ticks_per_second, unsigned long *drift_info); #ifdef CONFIG_HOTPLUG_CPU /* * System Abstraction Layer Specification * Section 3.2.5.1: OS_BOOT_RENDEZ to SAL return State. * Note: region regs are stored first in head.S _start. Hence they must * stay up front. */ struct sal_to_os_boot { u64 rr[8]; /* Region Registers */ u64 br[6]; /* br0: * return addr into SAL boot rendez routine */ u64 gr1; /* SAL:GP */ u64 gr12; /* SAL:SP */ u64 gr13; /* SAL: Task Pointer */ u64 fpsr; u64 pfs; u64 rnat; u64 unat; u64 bspstore; u64 dcr; /* Default Control Register */ u64 iva; u64 pta; u64 itv; u64 pmv; u64 cmcv; u64 lrr[2]; u64 gr[4]; u64 pr; /* Predicate registers */ u64 lc; /* Loop Count */ struct ia64_fpreg fp[20]; }; /* * Global array allocated for NR_CPUS at boot time */ extern struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS]; extern void ia64_jump_to_sal(struct sal_to_os_boot *); #endif extern void ia64_sal_handler_init(void *entry_point, void *gpval); #define PALO_MAX_TLB_PURGES 0xFFFF #define PALO_SIG "PALO" struct palo_table { u8 signature[4]; /* Should be "PALO" */ u32 length; u8 minor_revision; u8 major_revision; u8 checksum; u8 reserved1[5]; u16 max_tlb_purges; u8 reserved2[6]; }; #define NPTCG_FROM_PAL 0 #define NPTCG_FROM_PALO 1 #define NPTCG_FROM_KERNEL_PARAMETER 2 #endif /* __ASSEMBLY__ */ #endif /* _ASM_IA64_SAL_H */