/* * Performance counters: * * Copyright(C) 2008, Thomas Gleixner * Copyright(C) 2008, Red Hat, Inc., Ingo Molnar * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_PERF_COUNTER_H #define _LINUX_PERF_COUNTER_H #include #include #include /* * User-space ABI bits: */ /* * attr.type */ enum perf_type_id { PERF_TYPE_HARDWARE = 0, PERF_TYPE_SOFTWARE = 1, PERF_TYPE_TRACEPOINT = 2, PERF_TYPE_HW_CACHE = 3, PERF_TYPE_RAW = 4, PERF_TYPE_MAX, /* non ABI */ }; /* * Generalized performance counter event types, used by the attr.event_id * parameter of the sys_perf_counter_open() syscall: */ enum perf_hw_id { /* * Common hardware events, generalized by the kernel: */ PERF_COUNT_HW_CPU_CYCLES = 0, PERF_COUNT_HW_INSTRUCTIONS = 1, PERF_COUNT_HW_CACHE_REFERENCES = 2, PERF_COUNT_HW_CACHE_MISSES = 3, PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, PERF_COUNT_HW_BRANCH_MISSES = 5, PERF_COUNT_HW_BUS_CYCLES = 6, PERF_COUNT_HW_MAX, /* non ABI */ }; /* * Generalized hardware cache counters: * * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x * { read, write, prefetch } x * { accesses, misses } */ enum perf_hw_cache_id { PERF_COUNT_HW_CACHE_L1D = 0, PERF_COUNT_HW_CACHE_L1I = 1, PERF_COUNT_HW_CACHE_LL = 2, PERF_COUNT_HW_CACHE_DTLB = 3, PERF_COUNT_HW_CACHE_ITLB = 4, PERF_COUNT_HW_CACHE_BPU = 5, PERF_COUNT_HW_CACHE_MAX, /* non ABI */ }; enum perf_hw_cache_op_id { PERF_COUNT_HW_CACHE_OP_READ = 0, PERF_COUNT_HW_CACHE_OP_WRITE = 1, PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, PERF_COUNT_HW_CACHE_OP_MAX, /* non ABI */ }; enum perf_hw_cache_op_result_id { PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, PERF_COUNT_HW_CACHE_RESULT_MISS = 1, PERF_COUNT_HW_CACHE_RESULT_MAX, /* non ABI */ }; /* * Special "software" counters provided by the kernel, even if the hardware * does not support performance counters. These counters measure various * physical and sw events of the kernel (and allow the profiling of them as * well): */ enum perf_sw_ids { PERF_COUNT_SW_CPU_CLOCK = 0, PERF_COUNT_SW_TASK_CLOCK = 1, PERF_COUNT_SW_PAGE_FAULTS = 2, PERF_COUNT_SW_CONTEXT_SWITCHES = 3, PERF_COUNT_SW_CPU_MIGRATIONS = 4, PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, PERF_COUNT_SW_MAX, /* non ABI */ }; /* * Bits that can be set in attr.sample_type to request information * in the overflow packets. */ enum perf_counter_sample_format { PERF_SAMPLE_IP = 1U << 0, PERF_SAMPLE_TID = 1U << 1, PERF_SAMPLE_TIME = 1U << 2, PERF_SAMPLE_ADDR = 1U << 3, PERF_SAMPLE_GROUP = 1U << 4, PERF_SAMPLE_CALLCHAIN = 1U << 5, PERF_SAMPLE_ID = 1U << 6, PERF_SAMPLE_CPU = 1U << 7, PERF_SAMPLE_PERIOD = 1U << 8, }; /* * Bits that can be set in attr.read_format to request that * reads on the counter should return the indicated quantities, * in increasing order of bit value, after the counter value. */ enum perf_counter_read_format { PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, PERF_FORMAT_ID = 1U << 2, }; /* * Hardware event to monitor via a performance monitoring counter: */ struct perf_counter_attr { /* * Major type: hardware/software/tracepoint/etc. */ __u32 type; __u32 __reserved_1; /* * Type specific configuration information. */ __u64 config; union { __u64 sample_period; __u64 sample_freq; }; __u64 sample_type; __u64 read_format; __u64 disabled : 1, /* off by default */ inherit : 1, /* children inherit it */ pinned : 1, /* must always be on PMU */ exclusive : 1, /* only group on PMU */ exclude_user : 1, /* don't count user */ exclude_kernel : 1, /* ditto kernel */ exclude_hv : 1, /* ditto hypervisor */ exclude_idle : 1, /* don't count when idle */ mmap : 1, /* include mmap data */ comm : 1, /* include comm data */ freq : 1, /* use freq, not period */ __reserved_2 : 53; __u32 wakeup_events; /* wakeup every n events */ __u32 __reserved_3; __u64 __reserved_4; }; /* * Ioctls that can be done on a perf counter fd: */ #define PERF_COUNTER_IOC_ENABLE _IO ('$', 0) #define PERF_COUNTER_IOC_DISABLE _IO ('$', 1) #define PERF_COUNTER_IOC_REFRESH _IO ('$', 2) #define PERF_COUNTER_IOC_RESET _IO ('$', 3) #define PERF_COUNTER_IOC_PERIOD _IOW('$', 4, u64) enum perf_counter_ioc_flags { PERF_IOC_FLAG_GROUP = 1U << 0, }; /* * Structure of the page that can be mapped via mmap */ struct perf_counter_mmap_page { __u32 version; /* version number of this structure */ __u32 compat_version; /* lowest version this is compat with */ /* * Bits needed to read the hw counters in user-space. * * u32 seq; * s64 count; * * do { * seq = pc->lock; * * barrier() * if (pc->index) { * count = pmc_read(pc->index - 1); * count += pc->offset; * } else * goto regular_read; * * barrier(); * } while (pc->lock != seq); * * NOTE: for obvious reason this only works on self-monitoring * processes. */ __u32 lock; /* seqlock for synchronization */ __u32 index; /* hardware counter identifier */ __s64 offset; /* add to hardware counter value */ /* * Control data for the mmap() data buffer. * * User-space reading this value should issue an rmb(), on SMP capable * platforms, after reading this value -- see perf_counter_wakeup(). */ __u64 data_head; /* head in the data section */ }; #define PERF_EVENT_MISC_CPUMODE_MASK (3 << 0) #define PERF_EVENT_MISC_CPUMODE_UNKNOWN (0 << 0) #define PERF_EVENT_MISC_KERNEL (1 << 0) #define PERF_EVENT_MISC_USER (2 << 0) #define PERF_EVENT_MISC_HYPERVISOR (3 << 0) #define PERF_EVENT_MISC_OVERFLOW (1 << 2) struct perf_event_header { __u32 type; __u16 misc; __u16 size; }; enum perf_event_type { /* * The MMAP events record the PROT_EXEC mappings so that we can * correlate userspace IPs to code. They have the following structure: * * struct { * struct perf_event_header header; * * u32 pid, tid; * u64 addr; * u64 len; * u64 pgoff; * char filename[]; * }; */ PERF_EVENT_MMAP = 1, /* * struct { * struct perf_event_header header; * * u32 pid, tid; * char comm[]; * }; */ PERF_EVENT_COMM = 3, /* * struct { * struct perf_event_header header; * u64 time; * u64 id; * u64 sample_period; * }; */ PERF_EVENT_PERIOD = 4, /* * struct { * struct perf_event_header header; * u64 time; * }; */ PERF_EVENT_THROTTLE = 5, PERF_EVENT_UNTHROTTLE = 6, /* * struct { * struct perf_event_header header; * u32 pid, ppid; * }; */ PERF_EVENT_FORK = 7, /* * When header.misc & PERF_EVENT_MISC_OVERFLOW the event_type field * will be PERF_RECORD_* * * struct { * struct perf_event_header header; * * { u64 ip; } && PERF_RECORD_IP * { u32 pid, tid; } && PERF_RECORD_TID * { u64 time; } && PERF_RECORD_TIME * { u64 addr; } && PERF_RECORD_ADDR * { u64 config; } && PERF_RECORD_CONFIG * { u32 cpu, res; } && PERF_RECORD_CPU * * { u64 nr; * { u64 id, val; } cnt[nr]; } && PERF_RECORD_GROUP * * { u16 nr, * hv, * kernel, * user; * u64 ips[nr]; } && PERF_RECORD_CALLCHAIN * }; */ }; #ifdef __KERNEL__ /* * Kernel-internal data types and definitions: */ #ifdef CONFIG_PERF_COUNTERS # include #endif #include #include #include #include #include #include #include #include #include struct task_struct; /** * struct hw_perf_counter - performance counter hardware details: */ struct hw_perf_counter { #ifdef CONFIG_PERF_COUNTERS union { struct { /* hardware */ u64 config; unsigned long config_base; unsigned long counter_base; int idx; }; union { /* software */ atomic64_t count; struct hrtimer hrtimer; }; }; atomic64_t prev_count; u64 sample_period; u64 last_period; atomic64_t period_left; u64 interrupts; u64 freq_count; u64 freq_interrupts; u64 freq_stamp; #endif }; struct perf_counter; /** * struct pmu - generic performance monitoring unit */ struct pmu { int (*enable) (struct perf_counter *counter); void (*disable) (struct perf_counter *counter); void (*read) (struct perf_counter *counter); void (*unthrottle) (struct perf_counter *counter); }; /** * enum perf_counter_active_state - the states of a counter */ enum perf_counter_active_state { PERF_COUNTER_STATE_ERROR = -2, PERF_COUNTER_STATE_OFF = -1, PERF_COUNTER_STATE_INACTIVE = 0, PERF_COUNTER_STATE_ACTIVE = 1, }; struct file; struct perf_mmap_data { struct rcu_head rcu_head; int nr_pages; /* nr of data pages */ int nr_locked; /* nr pages mlocked */ atomic_t poll; /* POLL_ for wakeups */ atomic_t events; /* event limit */ atomic_long_t head; /* write position */ atomic_long_t done_head; /* completed head */ atomic_t lock; /* concurrent writes */ atomic_t wakeup; /* needs a wakeup */ struct perf_counter_mmap_page *user_page; void *data_pages[0]; }; struct perf_pending_entry { struct perf_pending_entry *next; void (*func)(struct perf_pending_entry *); }; /** * struct perf_counter - performance counter kernel representation: */ struct perf_counter { #ifdef CONFIG_PERF_COUNTERS struct list_head list_entry; struct list_head event_entry; struct list_head sibling_list; int nr_siblings; struct perf_counter *group_leader; const struct pmu *pmu; enum perf_counter_active_state state; atomic64_t count; /* * These are the total time in nanoseconds that the counter * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task counter) * and running (scheduled onto the CPU), respectively. * * They are computed from tstamp_enabled, tstamp_running and * tstamp_stopped when the counter is in INACTIVE or ACTIVE state. */ u64 total_time_enabled; u64 total_time_running; /* * These are timestamps used for computing total_time_enabled * and total_time_running when the counter is in INACTIVE or * ACTIVE state, measured in nanoseconds from an arbitrary point * in time. * tstamp_enabled: the notional time when the counter was enabled * tstamp_running: the notional time when the counter was scheduled on * tstamp_stopped: in INACTIVE state, the notional time when the * counter was scheduled off. */ u64 tstamp_enabled; u64 tstamp_running; u64 tstamp_stopped; struct perf_counter_attr attr; struct hw_perf_counter hw; struct perf_counter_context *ctx; struct file *filp; /* * These accumulate total time (in nanoseconds) that children * counters have been enabled and running, respectively. */ atomic64_t child_total_time_enabled; atomic64_t child_total_time_running; /* * Protect attach/detach and child_list: */ struct mutex child_mutex; struct list_head child_list; struct perf_counter *parent; int oncpu; int cpu; struct list_head owner_entry; struct task_struct *owner; /* mmap bits */ struct mutex mmap_mutex; atomic_t mmap_count; struct perf_mmap_data *data; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ int pending_wakeup; int pending_kill; int pending_disable; struct perf_pending_entry pending; atomic_t event_limit; void (*destroy)(struct perf_counter *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; #endif }; /** * struct perf_counter_context - counter context structure * * Used as a container for task counters and CPU counters as well: */ struct perf_counter_context { /* * Protect the states of the counters in the list, * nr_active, and the list: */ spinlock_t lock; /* * Protect the list of counters. Locking either mutex or lock * is sufficient to ensure the list doesn't change; to change * the list you need to lock both the mutex and the spinlock. */ struct mutex mutex; struct list_head counter_list; struct list_head event_list; int nr_counters; int nr_active; int is_active; atomic_t refcount; struct task_struct *task; /* * Context clock, runs when context enabled. */ u64 time; u64 timestamp; /* * These fields let us detect when two contexts have both * been cloned (inherited) from a common ancestor. */ struct perf_counter_context *parent_ctx; u64 parent_gen; u64 generation; int pin_count; struct rcu_head rcu_head; }; /** * struct perf_counter_cpu_context - per cpu counter context structure */ struct perf_cpu_context { struct perf_counter_context ctx; struct perf_counter_context *task_ctx; int active_oncpu; int max_pertask; int exclusive; /* * Recursion avoidance: * * task, softirq, irq, nmi context */ int recursion[4]; }; #ifdef CONFIG_PERF_COUNTERS /* * Set by architecture code: */ extern int perf_max_counters; extern const struct pmu *hw_perf_counter_init(struct perf_counter *counter); extern void perf_counter_task_sched_in(struct task_struct *task, int cpu); extern void perf_counter_task_sched_out(struct task_struct *task, struct task_struct *next, int cpu); extern void perf_counter_task_tick(struct task_struct *task, int cpu); extern int perf_counter_init_task(struct task_struct *child); extern void perf_counter_exit_task(struct task_struct *child); extern void perf_counter_free_task(struct task_struct *task); extern void perf_counter_do_pending(void); extern void perf_counter_print_debug(void); extern void __perf_disable(void); extern bool __perf_enable(void); extern void perf_disable(void); extern void perf_enable(void); extern int perf_counter_task_disable(void); extern int perf_counter_task_enable(void); extern int hw_perf_group_sched_in(struct perf_counter *group_leader, struct perf_cpu_context *cpuctx, struct perf_counter_context *ctx, int cpu); extern void perf_counter_update_userpage(struct perf_counter *counter); struct perf_sample_data { struct pt_regs *regs; u64 addr; u64 period; }; extern int perf_counter_overflow(struct perf_counter *counter, int nmi, struct perf_sample_data *data); /* * Return 1 for a software counter, 0 for a hardware counter */ static inline int is_software_counter(struct perf_counter *counter) { return (counter->attr.type != PERF_TYPE_RAW) && (counter->attr.type != PERF_TYPE_HARDWARE); } extern void perf_swcounter_event(u32, u64, int, struct pt_regs *, u64); extern void __perf_counter_mmap(struct vm_area_struct *vma); static inline void perf_counter_mmap(struct vm_area_struct *vma) { if (vma->vm_flags & VM_EXEC) __perf_counter_mmap(vma); } extern void perf_counter_comm(struct task_struct *tsk); extern void perf_counter_fork(struct task_struct *tsk); extern void perf_counter_task_migration(struct task_struct *task, int cpu); #define MAX_STACK_DEPTH 255 struct perf_callchain_entry { u16 nr, hv, kernel, user; u64 ip[MAX_STACK_DEPTH]; }; extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs); extern int sysctl_perf_counter_paranoid; extern int sysctl_perf_counter_mlock; extern int sysctl_perf_counter_sample_rate; extern void perf_counter_init(void); #ifndef perf_misc_flags #define perf_misc_flags(regs) (user_mode(regs) ? PERF_EVENT_MISC_USER : \ PERF_EVENT_MISC_KERNEL) #define perf_instruction_pointer(regs) instruction_pointer(regs) #endif #else static inline void perf_counter_task_sched_in(struct task_struct *task, int cpu) { } static inline void perf_counter_task_sched_out(struct task_struct *task, struct task_struct *next, int cpu) { } static inline void perf_counter_task_tick(struct task_struct *task, int cpu) { } static inline int perf_counter_init_task(struct task_struct *child) { return 0; } static inline void perf_counter_exit_task(struct task_struct *child) { } static inline void perf_counter_free_task(struct task_struct *task) { } static inline void perf_counter_do_pending(void) { } static inline void perf_counter_print_debug(void) { } static inline void perf_disable(void) { } static inline void perf_enable(void) { } static inline int perf_counter_task_disable(void) { return -EINVAL; } static inline int perf_counter_task_enable(void) { return -EINVAL; } static inline void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr) { } static inline void perf_counter_mmap(struct vm_area_struct *vma) { } static inline void perf_counter_comm(struct task_struct *tsk) { } static inline void perf_counter_fork(struct task_struct *tsk) { } static inline void perf_counter_init(void) { } static inline void perf_counter_task_migration(struct task_struct *task, int cpu) { } #endif #endif /* __KERNEL__ */ #endif /* _LINUX_PERF_COUNTER_H */