/* * include/asm-s390/pgtable.h * * S390 version * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (weigand@de.ibm.com) * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/pgtable.h" */ #ifndef _ASM_S390_PGTABLE_H #define _ASM_S390_PGTABLE_H #include /* * The Linux memory management assumes a three-level page table setup. For * s390 31 bit we "fold" the mid level into the top-level page table, so * that we physically have the same two-level page table as the s390 mmu * expects in 31 bit mode. For s390 64 bit we use three of the five levels * the hardware provides (region first and region second tables are not * used). * * The "pgd_xxx()" functions are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) * * This file contains the functions and defines necessary to modify and use * the S390 page table tree. */ #ifndef __ASSEMBLY__ #include #include #include struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ struct mm_struct; extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); extern void paging_init(void); /* * The S390 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma, address, pte) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern char empty_zero_page[PAGE_SIZE]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* !__ASSEMBLY__ */ /* * PMD_SHIFT determines the size of the area a second-level page * table can map * PGDIR_SHIFT determines what a third-level page table entry can map */ #ifndef __s390x__ # define PMD_SHIFT 22 # define PGDIR_SHIFT 22 #else /* __s390x__ */ # define PMD_SHIFT 21 # define PGDIR_SHIFT 31 #endif /* __s390x__ */ #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the S390 is two-level, so * we don't really have any PMD directory physically. * for S390 segment-table entries are combined to one PGD * that leads to 1024 pte per pgd */ #ifndef __s390x__ # define PTRS_PER_PTE 1024 # define PTRS_PER_PMD 1 # define PTRS_PER_PGD 512 #else /* __s390x__ */ # define PTRS_PER_PTE 512 # define PTRS_PER_PMD 1024 # define PTRS_PER_PGD 2048 #endif /* __s390x__ */ /* * pgd entries used up by user/kernel: */ #ifndef __s390x__ # define USER_PTRS_PER_PGD 512 # define USER_PGD_PTRS 512 # define KERNEL_PGD_PTRS 512 #else /* __s390x__ */ # define USER_PTRS_PER_PGD 2048 # define USER_PGD_PTRS 2048 # define KERNEL_PGD_PTRS 2048 #endif /* __s390x__ */ #define FIRST_USER_ADDRESS 0 #define pte_ERROR(e) \ printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) #ifndef __ASSEMBLY__ /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ & ~(VMALLOC_OFFSET-1)) #ifndef __s390x__ # define VMALLOC_END (0x7fffffffL) #else /* __s390x__ */ # define VMALLOC_END (0x40000000000L) #endif /* __s390x__ */ /* * A 31 bit pagetable entry of S390 has following format: * | PFRA | | OS | * 0 0IP0 * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * * A 31 bit segmenttable entry of S390 has following format: * | P-table origin | |PTL * 0 IC * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) * * The 31 bit segmenttable origin of S390 has following format: * * |S-table origin | | STL | * X **GPS * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * X Space-Switch event: * G Segment-Invalid Bit: * * P Private-Space Bit: Segment is not private (PoP 3-30) * S Storage-Alteration: * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) * * A 64 bit pagetable entry of S390 has following format: * | PFRA |0IP0| OS | * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * * A 64 bit segmenttable entry of S390 has following format: * | P-table origin | TT * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * P Page-Protection Bit: Store access not possible for page * TT Type 00 * * A 64 bit region table entry of S390 has following format: * | S-table origin | TF TTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * TT Type 01 * TF * TL Table lenght * * The 64 bit regiontable origin of S390 has following format: * | region table origon | DTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * X Space-Switch event: * G Segment-Invalid Bit: * P Private-Space Bit: * S Storage-Alteration: * R Real space * TL Table-Length: * * A storage key has the following format: * | ACC |F|R|C|0| * 0 3 4 5 6 7 * ACC: access key * F : fetch protection bit * R : referenced bit * C : changed bit */ /* Hardware bits in the page table entry */ #define _PAGE_RO 0x200 /* HW read-only */ #define _PAGE_INVALID 0x400 /* HW invalid */ /* Mask and four different kinds of invalid pages. */ #define _PAGE_INVALID_MASK 0x601 #define _PAGE_INVALID_EMPTY 0x400 #define _PAGE_INVALID_NONE 0x401 #define _PAGE_INVALID_SWAP 0x600 #define _PAGE_INVALID_FILE 0x601 #ifndef __s390x__ /* Bits in the segment table entry */ #define _PAGE_TABLE_LEN 0xf /* only full page-tables */ #define _PAGE_TABLE_COM 0x10 /* common page-table */ #define _PAGE_TABLE_INV 0x20 /* invalid page-table */ #define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */ /* Bits int the storage key */ #define _PAGE_CHANGED 0x02 /* HW changed bit */ #define _PAGE_REFERENCED 0x04 /* HW referenced bit */ #define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */ #define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */ /* * User and Kernel pagetables are identical */ #define _PAGE_TABLE _PAGE_TABLE_LEN #define _KERNPG_TABLE _PAGE_TABLE_LEN /* * The Kernel segment-tables includes the User segment-table */ #define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100) #define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN #define USER_STD_MASK 0x00000080UL #else /* __s390x__ */ /* Bits in the segment table entry */ #define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */ #define _PMD_ENTRY 0x00 /* Bits in the region third table entry */ #define _PGD_ENTRY_INV 0x20 /* invalid region table entry */ #define _PGD_ENTRY 0x07 /* * User and kernel page directory */ #define _REGION_THIRD 0x4 #define _REGION_THIRD_LEN 0x3 #define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100) #define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN) #define USER_STD_MASK 0x0000000000000080UL /* Bits in the storage key */ #define _PAGE_CHANGED 0x02 /* HW changed bit */ #define _PAGE_REFERENCED 0x04 /* HW referenced bit */ #endif /* __s390x__ */ /* * No mapping available */ #define PAGE_NONE_SHARED __pgprot(_PAGE_INVALID_NONE) #define PAGE_NONE_PRIVATE __pgprot(_PAGE_INVALID_NONE) #define PAGE_RO_SHARED __pgprot(_PAGE_RO) #define PAGE_RO_PRIVATE __pgprot(_PAGE_RO) #define PAGE_COPY __pgprot(_PAGE_RO) #define PAGE_SHARED __pgprot(0) #define PAGE_KERNEL __pgprot(0) /* * The S390 can't do page protection for execute, and considers that the * same are read. Also, write permissions imply read permissions. This is * the closest we can get.. */ /*xwr*/ #define __P000 PAGE_NONE_PRIVATE #define __P001 PAGE_RO_PRIVATE #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_RO_PRIVATE #define __P101 PAGE_RO_PRIVATE #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE_SHARED #define __S001 PAGE_RO_SHARED #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_RO_SHARED #define __S101 PAGE_RO_SHARED #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ static inline void set_pte(pte_t *pteptr, pte_t pteval) { *pteptr = pteval; } #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) /* * pgd/pmd/pte query functions */ #ifndef __s390x__ static inline int pgd_present(pgd_t pgd) { return 1; } static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; } static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; } static inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE; } #else /* __s390x__ */ static inline int pgd_present(pgd_t pgd) { return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY; } static inline int pgd_none(pgd_t pgd) { return pgd_val(pgd) & _PGD_ENTRY_INV; } static inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY; } static inline int pmd_present(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY; } static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PMD_ENTRY_INV; } static inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY; } #endif /* __s390x__ */ static inline int pte_none(pte_t pte) { return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_EMPTY; } static inline int pte_present(pte_t pte) { return !(pte_val(pte) & _PAGE_INVALID) || (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_NONE; } static inline int pte_file(pte_t pte) { return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_FILE; } #define pte_same(a,b) (pte_val(a) == pte_val(b)) /* * query functions pte_write/pte_dirty/pte_young only work if * pte_present() is true. Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_RO) == 0; } static inline int pte_dirty(pte_t pte) { /* A pte is neither clean nor dirty on s/390. The dirty bit * is in the storage key. See page_test_and_clear_dirty for * details. */ return 0; } static inline int pte_young(pte_t pte) { /* A pte is neither young nor old on s/390. The young bit * is in the storage key. See page_test_and_clear_young for * details. */ return 0; } static inline int pte_read(pte_t pte) { /* All pages are readable since we don't use the fetch * protection bit in the storage key. */ return 1; } /* * pgd/pmd/pte modification functions */ #ifndef __s390x__ static inline void pgd_clear(pgd_t * pgdp) { } static inline void pmd_clear(pmd_t * pmdp) { pmd_val(pmdp[0]) = _PAGE_TABLE_INV; pmd_val(pmdp[1]) = _PAGE_TABLE_INV; pmd_val(pmdp[2]) = _PAGE_TABLE_INV; pmd_val(pmdp[3]) = _PAGE_TABLE_INV; } #else /* __s390x__ */ static inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY; } static inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; } #endif /* __s390x__ */ static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_val(*ptep) = _PAGE_INVALID_EMPTY; } /* * The following pte modification functions only work if * pte_present() is true. Undefined behaviour if not.. */ static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) &= PAGE_MASK; pte_val(pte) |= pgprot_val(newprot); return pte; } static inline pte_t pte_wrprotect(pte_t pte) { /* Do not clobber _PAGE_INVALID_NONE pages! */ if (!(pte_val(pte) & _PAGE_INVALID)) pte_val(pte) |= _PAGE_RO; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RO; return pte; } static inline pte_t pte_mkclean(pte_t pte) { /* The only user of pte_mkclean is the fork() code. We must *not* clear the *physical* page dirty bit just because fork() wants to clear the dirty bit in *one* of the page's mappings. So we just do nothing. */ return pte; } static inline pte_t pte_mkdirty(pte_t pte) { /* We do not explicitly set the dirty bit because the * sske instruction is slow. It is faster to let the * next instruction set the dirty bit. */ return pte; } static inline pte_t pte_mkold(pte_t pte) { /* S/390 doesn't keep its dirty/referenced bit in the pte. * There is no point in clearing the real referenced bit. */ return pte; } static inline pte_t pte_mkyoung(pte_t pte) { /* S/390 doesn't keep its dirty/referenced bit in the pte. * There is no point in setting the real referenced bit. */ return pte; } static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return 0; } static inline int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* No need to flush TLB; bits are in storage key */ return ptep_test_and_clear_young(vma, address, ptep); } static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return 0; } static inline int ptep_clear_flush_dirty(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* No need to flush TLB; bits are in storage key */ return ptep_test_and_clear_dirty(vma, address, ptep); } static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, addr, ptep); return pte; } static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; #ifndef __s390x__ if (!(pte_val(pte) & _PAGE_INVALID)) { /* S390 has 1mb segments, we are emulating 4MB segments */ pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); __asm__ __volatile__ ("ipte %2,%3" : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address) ); } #else /* __s390x__ */ if (!(pte_val(pte) & _PAGE_INVALID)) __asm__ __volatile__ ("ipte %2,%3" : "=m" (*ptep) : "m" (*ptep), "a" (ptep), "a" (address) ); #endif /* __s390x__ */ pte_val(*ptep) = _PAGE_INVALID_EMPTY; return pte; } static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t old_pte = *ptep; set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); } static inline void ptep_establish(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry) { ptep_clear_flush(vma, address, ptep); set_pte(ptep, entry); } #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ ptep_establish(__vma, __address, __ptep, __entry) /* * Test and clear dirty bit in storage key. * We can't clear the changed bit atomically. This is a potential * race against modification of the referenced bit. This function * should therefore only be called if it is not mapped in any * address space. */ #define page_test_and_clear_dirty(_page) \ ({ \ struct page *__page = (_page); \ unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ int __skey = page_get_storage_key(__physpage); \ if (__skey & _PAGE_CHANGED) \ page_set_storage_key(__physpage, __skey & ~_PAGE_CHANGED);\ (__skey & _PAGE_CHANGED); \ }) /* * Test and clear referenced bit in storage key. */ #define page_test_and_clear_young(page) \ ({ \ struct page *__page = (page); \ unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ int __ccode; \ asm volatile ("rrbe 0,%1\n\t" \ "ipm %0\n\t" \ "srl %0,28\n\t" \ : "=d" (__ccode) : "a" (__physpage) : "cc" ); \ (__ccode & 2); \ }) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); return __pte; } #define mk_pte(pg, pgprot) \ ({ \ struct page *__page = (pg); \ pgprot_t __pgprot = (pgprot); \ unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ pte_t __pte = mk_pte_phys(__physpage, __pgprot); \ __pte; \ }) #define pfn_pte(pfn, pgprot) \ ({ \ pgprot_t __pgprot = (pgprot); \ unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \ pte_t __pte = mk_pte_phys(__physpage, __pgprot); \ __pte; \ }) #ifdef __s390x__ #define pfn_pmd(pfn, pgprot) \ ({ \ pgprot_t __pgprot = (pgprot); \ unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \ pmd_t __pmd = __pmd(__physpage + pgprot_val(__pgprot)); \ __pmd; \ }) #endif /* __s390x__ */ #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pmd_page_kernel(pmd) (pmd_val(pmd) & PAGE_MASK) #define pmd_page(pmd) (mem_map+(pmd_val(pmd) >> PAGE_SHIFT)) #define pgd_page_kernel(pgd) (pgd_val(pgd) & PAGE_MASK) /* to find an entry in a page-table-directory */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #ifndef __s390x__ /* Find an entry in the second-level page table.. */ static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } #else /* __s390x__ */ /* Find an entry in the second-level page table.. */ #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define pmd_offset(dir,addr) \ ((pmd_t *) pgd_page_kernel(*(dir)) + pmd_index(addr)) #endif /* __s390x__ */ /* Find an entry in the third-level page table.. */ #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) #define pte_offset_kernel(pmd, address) \ ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address)) #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) /* * 31 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 21 and bit 22 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 30 and 31 are used to distinguish the different page types. For * a swapped page these bits need to be zero. * This leaves the bits 1-19 and bits 24-29 to store type and offset. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 * plus 24 for the offset. * 0| offset |0110|o|type |00| * 0 0000000001111111111 2222 2 22222 33 * 0 1234567890123456789 0123 4 56789 01 * * 64 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 52 and bit 55 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 53 and bit 54 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 62 and 63 are used to distinguish the different page types. For * a swapped page these bits need to be zero. * This leaves the bits 0-51 and bits 56-61 to store type and offset. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 * plus 56 for the offset. * | offset |0110|o|type |00| * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 */ #ifndef __s390x__ #define __SWP_OFFSET_MASK (~0UL >> 12) #else #define __SWP_OFFSET_MASK (~0UL >> 11) #endif static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; offset &= __SWP_OFFSET_MASK; pte_val(pte) = _PAGE_INVALID_SWAP | ((type & 0x1f) << 2) | ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); return pte; } #define __swp_type(entry) (((entry).val >> 2) & 0x1f) #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #ifndef __s390x__ # define PTE_FILE_MAX_BITS 26 #else /* __s390x__ */ # define PTE_FILE_MAX_BITS 59 #endif /* __s390x__ */ #define pte_to_pgoff(__pte) \ ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) #define pgoff_to_pte(__off) \ ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ | _PAGE_INVALID_FILE }) #endif /* !__ASSEMBLY__ */ #define kern_addr_valid(addr) (1) /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) #define __HAVE_ARCH_PTEP_ESTABLISH #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_CLEAR_FLUSH #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTE_SAME #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG #include #endif /* _S390_PAGE_H */