/* sun_esp.c: ESP front-end for Sparc SBUS systems. * * Copyright (C) 2007 David S. Miller (davem@davemloft.net) */ #include #include #include #include #include #include #include #include #include #include #include "esp_scsi.h" #define DRV_MODULE_NAME "sun_esp" #define PFX DRV_MODULE_NAME ": " #define DRV_VERSION "1.000" #define DRV_MODULE_RELDATE "April 19, 2007" #define dma_read32(REG) \ sbus_readl(esp->dma_regs + (REG)) #define dma_write32(VAL, REG) \ sbus_writel((VAL), esp->dma_regs + (REG)) static int __devinit esp_sbus_find_dma(struct esp *esp, struct sbus_dev *dma_sdev) { struct sbus_dev *sdev = esp->dev; struct sbus_dma *dma; if (dma_sdev != NULL) { for_each_dvma(dma) { if (dma->sdev == dma_sdev) break; } } else { for_each_dvma(dma) { if (dma->sdev == NULL) break; /* If bus + slot are the same and it has the * correct OBP name, it's ours. */ if (sdev->bus == dma->sdev->bus && sdev->slot == dma->sdev->slot && (!strcmp(dma->sdev->prom_name, "dma") || !strcmp(dma->sdev->prom_name, "espdma"))) break; } } if (dma == NULL) { printk(KERN_ERR PFX "[%s] Cannot find dma.\n", sdev->ofdev.node->full_name); return -ENODEV; } esp->dma = dma; esp->dma_regs = dma->regs; return 0; } static int __devinit esp_sbus_map_regs(struct esp *esp, int hme) { struct sbus_dev *sdev = esp->dev; struct resource *res; /* On HME, two reg sets exist, first is DVMA, * second is ESP registers. */ if (hme) res = &sdev->resource[1]; else res = &sdev->resource[0]; esp->regs = sbus_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP"); if (!esp->regs) return -ENOMEM; return 0; } static int __devinit esp_sbus_map_command_block(struct esp *esp) { struct sbus_dev *sdev = esp->dev; esp->command_block = sbus_alloc_consistent(sdev, 16, &esp->command_block_dma); if (!esp->command_block) return -ENOMEM; return 0; } static int __devinit esp_sbus_register_irq(struct esp *esp) { struct Scsi_Host *host = esp->host; struct sbus_dev *sdev = esp->dev; host->irq = sdev->irqs[0]; return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp); } static void __devinit esp_get_scsi_id(struct esp *esp) { struct sbus_dev *sdev = esp->dev; struct device_node *dp = sdev->ofdev.node; esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff); if (esp->scsi_id != 0xff) goto done; esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff); if (esp->scsi_id != 0xff) goto done; if (!sdev->bus) { /* SUN4 */ esp->scsi_id = 7; goto done; } esp->scsi_id = of_getintprop_default(sdev->bus->ofdev.node, "scsi-initiator-id", 7); done: esp->host->this_id = esp->scsi_id; esp->scsi_id_mask = (1 << esp->scsi_id); } static void __devinit esp_get_differential(struct esp *esp) { struct sbus_dev *sdev = esp->dev; struct device_node *dp = sdev->ofdev.node; if (of_find_property(dp, "differential", NULL)) esp->flags |= ESP_FLAG_DIFFERENTIAL; else esp->flags &= ~ESP_FLAG_DIFFERENTIAL; } static void __devinit esp_get_clock_params(struct esp *esp) { struct sbus_dev *sdev = esp->dev; struct device_node *dp = sdev->ofdev.node; struct device_node *bus_dp; int fmhz; bus_dp = NULL; if (sdev != NULL && sdev->bus != NULL) bus_dp = sdev->bus->ofdev.node; fmhz = of_getintprop_default(dp, "clock-frequency", 0); if (fmhz == 0) fmhz = (!bus_dp) ? 0 : of_getintprop_default(bus_dp, "clock-frequency", 0); esp->cfreq = fmhz; } static void __devinit esp_get_bursts(struct esp *esp, struct sbus_dev *dma) { struct sbus_dev *sdev = esp->dev; struct device_node *dp = sdev->ofdev.node; u8 bursts; bursts = of_getintprop_default(dp, "burst-sizes", 0xff); if (dma) { struct device_node *dma_dp = dma->ofdev.node; u8 val = of_getintprop_default(dma_dp, "burst-sizes", 0xff); if (val != 0xff) bursts &= val; } if (sdev->bus) { u8 val = of_getintprop_default(sdev->bus->ofdev.node, "burst-sizes", 0xff); if (val != 0xff) bursts &= val; } if (bursts == 0xff || (bursts & DMA_BURST16) == 0 || (bursts & DMA_BURST32) == 0) bursts = (DMA_BURST32 - 1); esp->bursts = bursts; } static void __devinit esp_sbus_get_props(struct esp *esp, struct sbus_dev *espdma) { esp_get_scsi_id(esp); esp_get_differential(esp); esp_get_clock_params(esp); esp_get_bursts(esp, espdma); } static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg) { sbus_writeb(val, esp->regs + (reg * 4UL)); } static u8 sbus_esp_read8(struct esp *esp, unsigned long reg) { return sbus_readb(esp->regs + (reg * 4UL)); } static dma_addr_t sbus_esp_map_single(struct esp *esp, void *buf, size_t sz, int dir) { return sbus_map_single(esp->dev, buf, sz, dir); } static int sbus_esp_map_sg(struct esp *esp, struct scatterlist *sg, int num_sg, int dir) { return sbus_map_sg(esp->dev, sg, num_sg, dir); } static void sbus_esp_unmap_single(struct esp *esp, dma_addr_t addr, size_t sz, int dir) { sbus_unmap_single(esp->dev, addr, sz, dir); } static void sbus_esp_unmap_sg(struct esp *esp, struct scatterlist *sg, int num_sg, int dir) { sbus_unmap_sg(esp->dev, sg, num_sg, dir); } static int sbus_esp_irq_pending(struct esp *esp) { if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR)) return 1; return 0; } static void sbus_esp_reset_dma(struct esp *esp) { int can_do_burst16, can_do_burst32, can_do_burst64; int can_do_sbus64, lim; u32 val; can_do_burst16 = (esp->bursts & DMA_BURST16) != 0; can_do_burst32 = (esp->bursts & DMA_BURST32) != 0; can_do_burst64 = 0; can_do_sbus64 = 0; if (sbus_can_dma_64bit(esp->dev)) can_do_sbus64 = 1; if (sbus_can_burst64(esp->sdev)) can_do_burst64 = (esp->bursts & DMA_BURST64) != 0; /* Put the DVMA into a known state. */ if (esp->dma->revision != dvmahme) { val = dma_read32(DMA_CSR); dma_write32(val | DMA_RST_SCSI, DMA_CSR); dma_write32(val & ~DMA_RST_SCSI, DMA_CSR); } switch (esp->dma->revision) { case dvmahme: dma_write32(DMA_RESET_FAS366, DMA_CSR); dma_write32(DMA_RST_SCSI, DMA_CSR); esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS | DMA_SCSI_DISAB | DMA_INT_ENAB); esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BRST_SZ); if (can_do_burst64) esp->prev_hme_dmacsr |= DMA_BRST64; else if (can_do_burst32) esp->prev_hme_dmacsr |= DMA_BRST32; if (can_do_sbus64) { esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64; sbus_set_sbus64(esp->dev, esp->bursts); } lim = 1000; while (dma_read32(DMA_CSR) & DMA_PEND_READ) { if (--lim == 0) { printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ " "will not clear!\n", esp->host->unique_id); break; } udelay(1); } dma_write32(0, DMA_CSR); dma_write32(esp->prev_hme_dmacsr, DMA_CSR); dma_write32(0, DMA_ADDR); break; case dvmarev2: if (esp->rev != ESP100) { val = dma_read32(DMA_CSR); dma_write32(val | DMA_3CLKS, DMA_CSR); } break; case dvmarev3: val = dma_read32(DMA_CSR); val &= ~DMA_3CLKS; val |= DMA_2CLKS; if (can_do_burst32) { val &= ~DMA_BRST_SZ; val |= DMA_BRST32; } dma_write32(val, DMA_CSR); break; case dvmaesc1: val = dma_read32(DMA_CSR); val |= DMA_ADD_ENABLE; val &= ~DMA_BCNT_ENAB; if (!can_do_burst32 && can_do_burst16) { val |= DMA_ESC_BURST; } else { val &= ~(DMA_ESC_BURST); } dma_write32(val, DMA_CSR); break; default: break; } /* Enable interrupts. */ val = dma_read32(DMA_CSR); dma_write32(val | DMA_INT_ENAB, DMA_CSR); } static void sbus_esp_dma_drain(struct esp *esp) { u32 csr; int lim; if (esp->dma->revision == dvmahme) return; csr = dma_read32(DMA_CSR); if (!(csr & DMA_FIFO_ISDRAIN)) return; if (esp->dma->revision != dvmarev3 && esp->dma->revision != dvmaesc1) dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR); lim = 1000; while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) { if (--lim == 0) { printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n", esp->host->unique_id); break; } udelay(1); } } static void sbus_esp_dma_invalidate(struct esp *esp) { if (esp->dma->revision == dvmahme) { dma_write32(DMA_RST_SCSI, DMA_CSR); esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | (DMA_PARITY_OFF | DMA_2CLKS | DMA_SCSI_DISAB | DMA_INT_ENAB)) & ~(DMA_ST_WRITE | DMA_ENABLE)); dma_write32(0, DMA_CSR); dma_write32(esp->prev_hme_dmacsr, DMA_CSR); /* This is necessary to avoid having the SCSI channel * engine lock up on us. */ dma_write32(0, DMA_ADDR); } else { u32 val; int lim; lim = 1000; while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) { if (--lim == 0) { printk(KERN_ALERT PFX "esp%d: DMA will not " "invalidate!\n", esp->host->unique_id); break; } udelay(1); } val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB); val |= DMA_FIFO_INV; dma_write32(val, DMA_CSR); val &= ~DMA_FIFO_INV; dma_write32(val, DMA_CSR); } } static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count, u32 dma_count, int write, u8 cmd) { u32 csr; BUG_ON(!(cmd & ESP_CMD_DMA)); sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW); sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED); if (esp->rev == FASHME) { sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO); sbus_esp_write8(esp, 0, FAS_RHI); scsi_esp_cmd(esp, cmd); csr = esp->prev_hme_dmacsr; csr |= DMA_SCSI_DISAB | DMA_ENABLE; if (write) csr |= DMA_ST_WRITE; else csr &= ~DMA_ST_WRITE; esp->prev_hme_dmacsr = csr; dma_write32(dma_count, DMA_COUNT); dma_write32(addr, DMA_ADDR); dma_write32(csr, DMA_CSR); } else { csr = dma_read32(DMA_CSR); csr |= DMA_ENABLE; if (write) csr |= DMA_ST_WRITE; else csr &= ~DMA_ST_WRITE; dma_write32(csr, DMA_CSR); if (esp->dma->revision == dvmaesc1) { u32 end = PAGE_ALIGN(addr + dma_count + 16U); dma_write32(end - addr, DMA_COUNT); } dma_write32(addr, DMA_ADDR); scsi_esp_cmd(esp, cmd); } } static int sbus_esp_dma_error(struct esp *esp) { u32 csr = dma_read32(DMA_CSR); if (csr & DMA_HNDL_ERROR) return 1; return 0; } static const struct esp_driver_ops sbus_esp_ops = { .esp_write8 = sbus_esp_write8, .esp_read8 = sbus_esp_read8, .map_single = sbus_esp_map_single, .map_sg = sbus_esp_map_sg, .unmap_single = sbus_esp_unmap_single, .unmap_sg = sbus_esp_unmap_sg, .irq_pending = sbus_esp_irq_pending, .reset_dma = sbus_esp_reset_dma, .dma_drain = sbus_esp_dma_drain, .dma_invalidate = sbus_esp_dma_invalidate, .send_dma_cmd = sbus_esp_send_dma_cmd, .dma_error = sbus_esp_dma_error, }; static int __devinit esp_sbus_probe_one(struct device *dev, struct sbus_dev *esp_dev, struct sbus_dev *espdma, struct sbus_bus *sbus, int hme) { struct scsi_host_template *tpnt = &scsi_esp_template; struct Scsi_Host *host; struct esp *esp; int err; host = scsi_host_alloc(tpnt, sizeof(struct esp)); err = -ENOMEM; if (!host) goto fail; host->max_id = (hme ? 16 : 8); esp = shost_priv(host); esp->host = host; esp->dev = esp_dev; esp->ops = &sbus_esp_ops; if (hme) esp->flags |= ESP_FLAG_WIDE_CAPABLE; err = esp_sbus_find_dma(esp, espdma); if (err < 0) goto fail_unlink; err = esp_sbus_map_regs(esp, hme); if (err < 0) goto fail_unlink; err = esp_sbus_map_command_block(esp); if (err < 0) goto fail_unmap_regs; err = esp_sbus_register_irq(esp); if (err < 0) goto fail_unmap_command_block; esp_sbus_get_props(esp, espdma); /* Before we try to touch the ESP chip, ESC1 dma can * come up with the reset bit set, so make sure that * is clear first. */ if (esp->dma->revision == dvmaesc1) { u32 val = dma_read32(DMA_CSR); dma_write32(val & ~DMA_RST_SCSI, DMA_CSR); } dev_set_drvdata(&esp_dev->ofdev.dev, esp); err = scsi_esp_register(esp, dev); if (err) goto fail_free_irq; return 0; fail_free_irq: free_irq(host->irq, esp); fail_unmap_command_block: sbus_free_consistent(esp->dev, 16, esp->command_block, esp->command_block_dma); fail_unmap_regs: sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE); fail_unlink: scsi_host_put(host); fail: return err; } static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match) { struct sbus_dev *sdev = to_sbus_device(&dev->dev); struct device_node *dp = dev->node; struct sbus_dev *dma_sdev = NULL; int hme = 0; if (dp->parent && (!strcmp(dp->parent->name, "espdma") || !strcmp(dp->parent->name, "dma"))) dma_sdev = sdev->parent; else if (!strcmp(dp->name, "SUNW,fas")) { dma_sdev = sdev; hme = 1; } return esp_sbus_probe_one(&dev->dev, sdev, dma_sdev, sdev->bus, hme); } static int __devexit esp_sbus_remove(struct of_device *dev) { struct esp *esp = dev_get_drvdata(&dev->dev); unsigned int irq = esp->host->irq; u32 val; scsi_esp_unregister(esp); /* Disable interrupts. */ val = dma_read32(DMA_CSR); dma_write32(val & ~DMA_INT_ENAB, DMA_CSR); free_irq(irq, esp); sbus_free_consistent(esp->dev, 16, esp->command_block, esp->command_block_dma); sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE); scsi_host_put(esp->host); return 0; } static struct of_device_id esp_match[] = { { .name = "SUNW,esp", }, { .name = "SUNW,fas", }, { .name = "esp", }, {}, }; MODULE_DEVICE_TABLE(of, esp_match); static struct of_platform_driver esp_sbus_driver = { .name = "esp", .match_table = esp_match, .probe = esp_sbus_probe, .remove = __devexit_p(esp_sbus_remove), }; static int __init sunesp_init(void) { return of_register_driver(&esp_sbus_driver, &sbus_bus_type); } static void __exit sunesp_exit(void) { of_unregister_driver(&esp_sbus_driver); } MODULE_DESCRIPTION("Sun ESP SCSI driver"); MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); module_init(sunesp_init); module_exit(sunesp_exit);