/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching, * auto carrier detecting ethernet driver. Also known as the * "Happy Meal Ethernet" found on SunSwift SBUS cards. * * Copyright (C) 1996, 1998, 1999, 2002, 2003, 2006 David S. Miller (davem@davemloft.net) * * Changes : * 2000/11/11 Willy Tarreau * - port to non-sparc architectures. Tested only on x86 and * only currently works with QFE PCI cards. * - ability to specify the MAC address at module load time by passing this * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SPARC #include #include #include #include #include #include #endif #include #include #include #ifdef CONFIG_PCI #include #ifdef CONFIG_SPARC #include #endif #endif #include "sunhme.h" #define DRV_NAME "sunhme" #define DRV_VERSION "3.00" #define DRV_RELDATE "June 23, 2006" #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)" static char version[] = DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n"; MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver"); MODULE_LICENSE("GPL"); static int macaddr[6]; /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ module_param_array(macaddr, int, NULL, 0); MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set"); #ifdef CONFIG_SBUS static struct quattro *qfe_sbus_list; #endif #ifdef CONFIG_PCI static struct quattro *qfe_pci_list; #endif #undef HMEDEBUG #undef SXDEBUG #undef RXDEBUG #undef TXDEBUG #undef TXLOGGING #ifdef TXLOGGING struct hme_tx_logent { unsigned int tstamp; int tx_new, tx_old; unsigned int action; #define TXLOG_ACTION_IRQ 0x01 #define TXLOG_ACTION_TXMIT 0x02 #define TXLOG_ACTION_TBUSY 0x04 #define TXLOG_ACTION_NBUFS 0x08 unsigned int status; }; #define TX_LOG_LEN 128 static struct hme_tx_logent tx_log[TX_LOG_LEN]; static int txlog_cur_entry; static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s) { struct hme_tx_logent *tlp; unsigned long flags; save_and_cli(flags); tlp = &tx_log[txlog_cur_entry]; tlp->tstamp = (unsigned int)jiffies; tlp->tx_new = hp->tx_new; tlp->tx_old = hp->tx_old; tlp->action = a; tlp->status = s; txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1); restore_flags(flags); } static __inline__ void tx_dump_log(void) { int i, this; this = txlog_cur_entry; for (i = 0; i < TX_LOG_LEN; i++) { printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i, tx_log[this].tstamp, tx_log[this].tx_new, tx_log[this].tx_old, tx_log[this].action, tx_log[this].status); this = (this + 1) & (TX_LOG_LEN - 1); } } static __inline__ void tx_dump_ring(struct happy_meal *hp) { struct hmeal_init_block *hb = hp->happy_block; struct happy_meal_txd *tp = &hb->happy_meal_txd[0]; int i; for (i = 0; i < TX_RING_SIZE; i+=4) { printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n", i, i + 4, le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr), le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr), le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr), le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr)); } } #else #define tx_add_log(hp, a, s) do { } while(0) #define tx_dump_log() do { } while(0) #define tx_dump_ring(hp) do { } while(0) #endif #ifdef HMEDEBUG #define HMD(x) printk x #else #define HMD(x) #endif /* #define AUTO_SWITCH_DEBUG */ #ifdef AUTO_SWITCH_DEBUG #define ASD(x) printk x #else #define ASD(x) #endif #define DEFAULT_IPG0 16 /* For lance-mode only */ #define DEFAULT_IPG1 8 /* For all modes */ #define DEFAULT_IPG2 4 /* For all modes */ #define DEFAULT_JAMSIZE 4 /* Toe jam */ /* NOTE: In the descriptor writes one _must_ write the address * member _first_. The card must not be allowed to see * the updated descriptor flags until the address is * correct. I've added a write memory barrier between * the two stores so that I can sleep well at night... -DaveM */ #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) static void sbus_hme_write32(void __iomem *reg, u32 val) { sbus_writel(val, reg); } static u32 sbus_hme_read32(void __iomem *reg) { return sbus_readl(reg); } static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) { rxd->rx_addr = addr; wmb(); rxd->rx_flags = flags; } static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) { txd->tx_addr = addr; wmb(); txd->tx_flags = flags; } static u32 sbus_hme_read_desc32(u32 *p) { return *p; } static void pci_hme_write32(void __iomem *reg, u32 val) { writel(val, reg); } static u32 pci_hme_read32(void __iomem *reg) { return readl(reg); } static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) { rxd->rx_addr = cpu_to_le32(addr); wmb(); rxd->rx_flags = cpu_to_le32(flags); } static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) { txd->tx_addr = cpu_to_le32(addr); wmb(); txd->tx_flags = cpu_to_le32(flags); } static u32 pci_hme_read_desc32(u32 *p) { return cpu_to_le32p(p); } #define hme_write32(__hp, __reg, __val) \ ((__hp)->write32((__reg), (__val))) #define hme_read32(__hp, __reg) \ ((__hp)->read32(__reg)) #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ ((__hp)->write_rxd((__rxd), (__flags), (__addr))) #define hme_write_txd(__hp, __txd, __flags, __addr) \ ((__hp)->write_txd((__txd), (__flags), (__addr))) #define hme_read_desc32(__hp, __p) \ ((__hp)->read_desc32(__p)) #define hme_dma_map(__hp, __ptr, __size, __dir) \ ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir))) #define hme_dma_unmap(__hp, __addr, __size, __dir) \ ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir))) #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))) #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))) #else #ifdef CONFIG_SBUS /* SBUS only compilation */ #define hme_write32(__hp, __reg, __val) \ sbus_writel((__val), (__reg)) #define hme_read32(__hp, __reg) \ sbus_readl(__reg) #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ do { (__rxd)->rx_addr = (__addr); \ wmb(); \ (__rxd)->rx_flags = (__flags); \ } while(0) #define hme_write_txd(__hp, __txd, __flags, __addr) \ do { (__txd)->tx_addr = (__addr); \ wmb(); \ (__txd)->tx_flags = (__flags); \ } while(0) #define hme_read_desc32(__hp, __p) (*(__p)) #define hme_dma_map(__hp, __ptr, __size, __dir) \ sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir)) #define hme_dma_unmap(__hp, __addr, __size, __dir) \ sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir)) #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)) #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)) #else /* PCI only compilation */ #define hme_write32(__hp, __reg, __val) \ writel((__val), (__reg)) #define hme_read32(__hp, __reg) \ readl(__reg) #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ do { (__rxd)->rx_addr = cpu_to_le32(__addr); \ wmb(); \ (__rxd)->rx_flags = cpu_to_le32(__flags); \ } while(0) #define hme_write_txd(__hp, __txd, __flags, __addr) \ do { (__txd)->tx_addr = cpu_to_le32(__addr); \ wmb(); \ (__txd)->tx_flags = cpu_to_le32(__flags); \ } while(0) #define hme_read_desc32(__hp, __p) cpu_to_le32p(__p) #define hme_dma_map(__hp, __ptr, __size, __dir) \ pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir)) #define hme_dma_unmap(__hp, __addr, __size, __dir) \ pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir)) #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)) #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)) #endif #endif #ifdef SBUS_DMA_BIDIRECTIONAL # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL #else # define DMA_BIDIRECTIONAL 0 #endif #ifdef SBUS_DMA_FROMDEVICE # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE #else # define DMA_TODEVICE 1 #endif #ifdef SBUS_DMA_TODEVICE # define DMA_TODEVICE SBUS_DMA_TODEVICE #else # define DMA_FROMDEVICE 2 #endif /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */ static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit) { hme_write32(hp, tregs + TCVR_BBDATA, bit); hme_write32(hp, tregs + TCVR_BBCLOCK, 0); hme_write32(hp, tregs + TCVR_BBCLOCK, 1); } #if 0 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal) { u32 ret; hme_write32(hp, tregs + TCVR_BBCLOCK, 0); hme_write32(hp, tregs + TCVR_BBCLOCK, 1); ret = hme_read32(hp, tregs + TCVR_CFG); if (internal) ret &= TCV_CFG_MDIO0; else ret &= TCV_CFG_MDIO1; return ret; } #endif static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal) { u32 retval; hme_write32(hp, tregs + TCVR_BBCLOCK, 0); udelay(1); retval = hme_read32(hp, tregs + TCVR_CFG); if (internal) retval &= TCV_CFG_MDIO0; else retval &= TCV_CFG_MDIO1; hme_write32(hp, tregs + TCVR_BBCLOCK, 1); return retval; } #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */ static int happy_meal_bb_read(struct happy_meal *hp, void __iomem *tregs, int reg) { u32 tmp; int retval = 0; int i; ASD(("happy_meal_bb_read: reg=%d ", reg)); /* Enable the MIF BitBang outputs. */ hme_write32(hp, tregs + TCVR_BBOENAB, 1); /* Force BitBang into the idle state. */ for (i = 0; i < 32; i++) BB_PUT_BIT(hp, tregs, 1); /* Give it the read sequence. */ BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); /* Give it the PHY address. */ tmp = hp->paddr & 0xff; for (i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it what register we want to read. */ tmp = (reg & 0xff); for (i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Close down the MIF BitBang outputs. */ hme_write32(hp, tregs + TCVR_BBOENAB, 0); /* Now read in the value. */ (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); for (i = 15; i >= 0; i--) retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); ASD(("value=%x\n", retval)); return retval; } static void happy_meal_bb_write(struct happy_meal *hp, void __iomem *tregs, int reg, unsigned short value) { u32 tmp; int i; ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value)); /* Enable the MIF BitBang outputs. */ hme_write32(hp, tregs + TCVR_BBOENAB, 1); /* Force BitBang into the idle state. */ for (i = 0; i < 32; i++) BB_PUT_BIT(hp, tregs, 1); /* Give it write sequence. */ BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); /* Give it the PHY address. */ tmp = (hp->paddr & 0xff); for (i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it what register we will be writing. */ tmp = (reg & 0xff); for (i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it to become ready for the bits. */ BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); for (i = 15; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((value >> i) & 1)); /* Close down the MIF BitBang outputs. */ hme_write32(hp, tregs + TCVR_BBOENAB, 0); } #define TCVR_READ_TRIES 16 static int happy_meal_tcvr_read(struct happy_meal *hp, void __iomem *tregs, int reg) { int tries = TCVR_READ_TRIES; int retval; ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg)); if (hp->tcvr_type == none) { ASD(("no transceiver, value=TCVR_FAILURE\n")); return TCVR_FAILURE; } if (!(hp->happy_flags & HFLAG_FENABLE)) { ASD(("doing bit bang\n")); return happy_meal_bb_read(hp, tregs, reg); } hme_write32(hp, tregs + TCVR_FRAME, (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18))); while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) udelay(20); if (!tries) { printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n"); return TCVR_FAILURE; } retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff; ASD(("value=%04x\n", retval)); return retval; } #define TCVR_WRITE_TRIES 16 static void happy_meal_tcvr_write(struct happy_meal *hp, void __iomem *tregs, int reg, unsigned short value) { int tries = TCVR_WRITE_TRIES; ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value)); /* Welcome to Sun Microsystems, can I take your order please? */ if (!(hp->happy_flags & HFLAG_FENABLE)) { happy_meal_bb_write(hp, tregs, reg, value); return; } /* Would you like fries with that? */ hme_write32(hp, tregs + TCVR_FRAME, (FRAME_WRITE | (hp->paddr << 23) | ((reg & 0xff) << 18) | (value & 0xffff))); while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) udelay(20); /* Anything else? */ if (!tries) printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n"); /* Fifty-two cents is your change, have a nice day. */ } /* Auto negotiation. The scheme is very simple. We have a timer routine * that keeps watching the auto negotiation process as it progresses. * The DP83840 is first told to start doing it's thing, we set up the time * and place the timer state machine in it's initial state. * * Here the timer peeks at the DP83840 status registers at each click to see * if the auto negotiation has completed, we assume here that the DP83840 PHY * will time out at some point and just tell us what (didn't) happen. For * complete coverage we only allow so many of the ticks at this level to run, * when this has expired we print a warning message and try another strategy. * This "other" strategy is to force the interface into various speed/duplex * configurations and we stop when we see a link-up condition before the * maximum number of "peek" ticks have occurred. * * Once a valid link status has been detected we configure the BigMAC and * the rest of the Happy Meal to speak the most efficient protocol we could * get a clean link for. The priority for link configurations, highest first * is: * 100 Base-T Full Duplex * 100 Base-T Half Duplex * 10 Base-T Full Duplex * 10 Base-T Half Duplex * * We start a new timer now, after a successful auto negotiation status has * been detected. This timer just waits for the link-up bit to get set in * the BMCR of the DP83840. When this occurs we print a kernel log message * describing the link type in use and the fact that it is up. * * If a fatal error of some sort is signalled and detected in the interrupt * service routine, and the chip is reset, or the link is ifconfig'd down * and then back up, this entire process repeats itself all over again. */ static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs) { hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); /* Downgrade from full to half duplex. Only possible * via ethtool. */ if (hp->sw_bmcr & BMCR_FULLDPLX) { hp->sw_bmcr &= ~(BMCR_FULLDPLX); happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); return 0; } /* Downgrade from 100 to 10. */ if (hp->sw_bmcr & BMCR_SPEED100) { hp->sw_bmcr &= ~(BMCR_SPEED100); happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); return 0; } /* We've tried everything. */ return -1; } static void display_link_mode(struct happy_meal *hp, void __iomem *tregs) { printk(KERN_INFO "%s: Link is up using ", hp->dev->name); if (hp->tcvr_type == external) printk("external "); else printk("internal "); printk("transceiver at "); hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) { if (hp->sw_lpa & LPA_100FULL) printk("100Mb/s, Full Duplex.\n"); else printk("100Mb/s, Half Duplex.\n"); } else { if (hp->sw_lpa & LPA_10FULL) printk("10Mb/s, Full Duplex.\n"); else printk("10Mb/s, Half Duplex.\n"); } } static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs) { printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name); if (hp->tcvr_type == external) printk("external "); else printk("internal "); printk("transceiver at "); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); if (hp->sw_bmcr & BMCR_SPEED100) printk("100Mb/s, "); else printk("10Mb/s, "); if (hp->sw_bmcr & BMCR_FULLDPLX) printk("Full Duplex.\n"); else printk("Half Duplex.\n"); } static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs) { int full; /* All we care about is making sure the bigmac tx_cfg has a * proper duplex setting. */ if (hp->timer_state == arbwait) { hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) goto no_response; if (hp->sw_lpa & LPA_100FULL) full = 1; else if (hp->sw_lpa & LPA_100HALF) full = 0; else if (hp->sw_lpa & LPA_10FULL) full = 1; else full = 0; } else { /* Forcing a link mode. */ hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); if (hp->sw_bmcr & BMCR_FULLDPLX) full = 1; else full = 0; } /* Before changing other bits in the tx_cfg register, and in * general any of other the TX config registers too, you * must: * 1) Clear Enable * 2) Poll with reads until that bit reads back as zero * 3) Make TX configuration changes * 4) Set Enable once more */ hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & ~(BIGMAC_TXCFG_ENABLE)); while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE) barrier(); if (full) { hp->happy_flags |= HFLAG_FULL; hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | BIGMAC_TXCFG_FULLDPLX); } else { hp->happy_flags &= ~(HFLAG_FULL); hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & ~(BIGMAC_TXCFG_FULLDPLX)); } hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE); return 0; no_response: return 1; } static int happy_meal_init(struct happy_meal *hp); static int is_lucent_phy(struct happy_meal *hp) { void __iomem *tregs = hp->tcvregs; unsigned short mr2, mr3; int ret = 0; mr2 = happy_meal_tcvr_read(hp, tregs, 2); mr3 = happy_meal_tcvr_read(hp, tregs, 3); if ((mr2 & 0xffff) == 0x0180 && ((mr3 & 0xffff) >> 10) == 0x1d) ret = 1; return ret; } static void happy_meal_timer(unsigned long data) { struct happy_meal *hp = (struct happy_meal *) data; void __iomem *tregs = hp->tcvregs; int restart_timer = 0; spin_lock_irq(&hp->happy_lock); hp->timer_ticks++; switch(hp->timer_state) { case arbwait: /* Only allow for 5 ticks, thats 10 seconds and much too * long to wait for arbitration to complete. */ if (hp->timer_ticks >= 10) { /* Enter force mode. */ do_force_mode: hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n", hp->dev->name); hp->sw_bmcr = BMCR_SPEED100; happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); if (!is_lucent_phy(hp)) { /* OK, seems we need do disable the transceiver for the first * tick to make sure we get an accurate link state at the * second tick. */ hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } hp->timer_state = ltrywait; hp->timer_ticks = 0; restart_timer = 1; } else { /* Anything interesting happen? */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) { int ret; /* Just what we've been waiting for... */ ret = set_happy_link_modes(hp, tregs); if (ret) { /* Ooops, something bad happened, go to force * mode. * * XXX Broken hubs which don't support 802.3u * XXX auto-negotiation make this happen as well. */ goto do_force_mode; } /* Success, at least so far, advance our state engine. */ hp->timer_state = lupwait; restart_timer = 1; } else { restart_timer = 1; } } break; case lupwait: /* Auto negotiation was successful and we are awaiting a * link up status. I have decided to let this timer run * forever until some sort of error is signalled, reporting * a message to the user at 10 second intervals. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); if (hp->sw_bmsr & BMSR_LSTATUS) { /* Wheee, it's up, display the link mode in use and put * the timer to sleep. */ display_link_mode(hp, tregs); hp->timer_state = asleep; restart_timer = 0; } else { if (hp->timer_ticks >= 10) { printk(KERN_NOTICE "%s: Auto negotiation successful, link still " "not completely up.\n", hp->dev->name); hp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case ltrywait: /* Making the timeout here too long can make it take * annoyingly long to attempt all of the link mode * permutations, but then again this is essentially * error recovery code for the most part. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); if (hp->timer_ticks == 1) { if (!is_lucent_phy(hp)) { /* Re-enable transceiver, we'll re-enable the transceiver next * tick, then check link state on the following tick. */ hp->sw_csconfig |= CSCONFIG_TCVDISAB; happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } restart_timer = 1; break; } if (hp->timer_ticks == 2) { if (!is_lucent_phy(hp)) { hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } restart_timer = 1; break; } if (hp->sw_bmsr & BMSR_LSTATUS) { /* Force mode selection success. */ display_forced_link_mode(hp, tregs); set_happy_link_modes(hp, tregs); /* XXX error? then what? */ hp->timer_state = asleep; restart_timer = 0; } else { if (hp->timer_ticks >= 4) { /* 6 seconds or so... */ int ret; ret = try_next_permutation(hp, tregs); if (ret == -1) { /* Aieee, tried them all, reset the * chip and try all over again. */ /* Let the user know... */ printk(KERN_NOTICE "%s: Link down, cable problem?\n", hp->dev->name); ret = happy_meal_init(hp); if (ret) { /* ho hum... */ printk(KERN_ERR "%s: Error, cannot re-init the " "Happy Meal.\n", hp->dev->name); } goto out; } if (!is_lucent_phy(hp)) { hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig |= CSCONFIG_TCVDISAB; happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } hp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case asleep: default: /* Can't happens.... */ printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n", hp->dev->name); restart_timer = 0; hp->timer_ticks = 0; hp->timer_state = asleep; /* foo on you */ break; }; if (restart_timer) { hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ add_timer(&hp->happy_timer); } out: spin_unlock_irq(&hp->happy_lock); } #define TX_RESET_TRIES 32 #define RX_RESET_TRIES 32 /* hp->happy_lock must be held */ static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs) { int tries = TX_RESET_TRIES; HMD(("happy_meal_tx_reset: reset, ")); /* Would you like to try our SMCC Delux? */ hme_write32(hp, bregs + BMAC_TXSWRESET, 0); while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries) udelay(20); /* Lettuce, tomato, buggy hardware (no extra charge)? */ if (!tries) printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!"); /* Take care. */ HMD(("done\n")); } /* hp->happy_lock must be held */ static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs) { int tries = RX_RESET_TRIES; HMD(("happy_meal_rx_reset: reset, ")); /* We have a special on GNU/Viking hardware bugs today. */ hme_write32(hp, bregs + BMAC_RXSWRESET, 0); while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries) udelay(20); /* Will that be all? */ if (!tries) printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!"); /* Don't forget your vik_1137125_wa. Have a nice day. */ HMD(("done\n")); } #define STOP_TRIES 16 /* hp->happy_lock must be held */ static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs) { int tries = STOP_TRIES; HMD(("happy_meal_stop: reset, ")); /* We're consolidating our STB products, it's your lucky day. */ hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL); while (hme_read32(hp, gregs + GREG_SWRESET) && --tries) udelay(20); /* Come back next week when we are "Sun Microelectronics". */ if (!tries) printk(KERN_ERR "happy meal: Fry guys."); /* Remember: "Different name, same old buggy as shit hardware." */ HMD(("done\n")); } /* hp->happy_lock must be held */ static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs) { struct net_device_stats *stats = &hp->net_stats; stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR); hme_write32(hp, bregs + BMAC_RCRCECTR, 0); stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR); hme_write32(hp, bregs + BMAC_UNALECTR, 0); stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR); hme_write32(hp, bregs + BMAC_GLECTR, 0); stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR); stats->collisions += (hme_read32(hp, bregs + BMAC_EXCTR) + hme_read32(hp, bregs + BMAC_LTCTR)); hme_write32(hp, bregs + BMAC_EXCTR, 0); hme_write32(hp, bregs + BMAC_LTCTR, 0); } /* hp->happy_lock must be held */ static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs) { ASD(("happy_meal_poll_stop: ")); /* If polling disabled or not polling already, nothing to do. */ if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) != (HFLAG_POLLENABLE | HFLAG_POLL)) { HMD(("not polling, return\n")); return; } /* Shut up the MIF. */ ASD(("were polling, mif ints off, ")); hme_write32(hp, tregs + TCVR_IMASK, 0xffff); /* Turn off polling. */ ASD(("polling off, ")); hme_write32(hp, tregs + TCVR_CFG, hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE)); /* We are no longer polling. */ hp->happy_flags &= ~(HFLAG_POLL); /* Let the bits set. */ udelay(200); ASD(("done\n")); } /* Only Sun can take such nice parts and fuck up the programming interface * like this. Good job guys... */ #define TCVR_RESET_TRIES 16 /* It should reset quickly */ #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */ /* hp->happy_lock must be held */ static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs) { u32 tconfig; int result, tries = TCVR_RESET_TRIES; tconfig = hme_read32(hp, tregs + TCVR_CFG); ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig)); if (hp->tcvr_type == external) { ASD(("external<")); hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT)); hp->tcvr_type = internal; hp->paddr = TCV_PADDR_ITX; ASD(("ISOLATE,")); happy_meal_tcvr_write(hp, tregs, MII_BMCR, (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); if (result == TCVR_FAILURE) { ASD(("phyread_fail>\n")); return -1; } ASD(("phyread_ok,PSELECT>")); hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); hp->tcvr_type = external; hp->paddr = TCV_PADDR_ETX; } else { if (tconfig & TCV_CFG_MDIO1) { ASD(("internal\n")); return -1; } ASD(("phyread_ok,~PSELECT>")); hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT))); hp->tcvr_type = internal; hp->paddr = TCV_PADDR_ITX; } } ASD(("BMCR_RESET ")); happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET); while (--tries) { result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); if (result == TCVR_FAILURE) return -1; hp->sw_bmcr = result; if (!(result & BMCR_RESET)) break; udelay(20); } if (!tries) { ASD(("BMCR RESET FAILED!\n")); return -1; } ASD(("RESET_OK\n")); /* Get fresh copies of the PHY registers. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); ASD(("UNISOLATE")); hp->sw_bmcr &= ~(BMCR_ISOLATE); happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); tries = TCVR_UNISOLATE_TRIES; while (--tries) { result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); if (result == TCVR_FAILURE) return -1; if (!(result & BMCR_ISOLATE)) break; udelay(20); } if (!tries) { ASD((" FAILED!\n")); return -1; } ASD((" SUCCESS and CSCONFIG_DFBYPASS\n")); if (!is_lucent_phy(hp)) { result = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS)); } return 0; } /* Figure out whether we have an internal or external transceiver. * * hp->happy_lock must be held */ static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs) { unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG); ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig)); if (hp->happy_flags & HFLAG_POLL) { /* If we are polling, we must stop to get the transceiver type. */ ASD((" ")); if (hp->tcvr_type == internal) { if (tconfig & TCV_CFG_MDIO1) { ASD((" ")); happy_meal_poll_stop(hp, tregs); hp->paddr = TCV_PADDR_ETX; hp->tcvr_type = external; ASD(("\n")); tconfig &= ~(TCV_CFG_PENABLE); tconfig |= TCV_CFG_PSELECT; hme_write32(hp, tregs + TCVR_CFG, tconfig); } } else { if (hp->tcvr_type == external) { ASD((" ")); if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) { ASD((" ")); happy_meal_poll_stop(hp, tregs); hp->paddr = TCV_PADDR_ITX; hp->tcvr_type = internal; ASD(("\n")); hme_write32(hp, tregs + TCVR_CFG, hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PSELECT)); } ASD(("\n")); } else { ASD(("\n")); } } } else { u32 reread = hme_read32(hp, tregs + TCVR_CFG); /* Else we can just work off of the MDIO bits. */ ASD((" ")); if (reread & TCV_CFG_MDIO1) { hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); hp->paddr = TCV_PADDR_ETX; hp->tcvr_type = external; ASD(("\n")); } else { if (reread & TCV_CFG_MDIO0) { hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT)); hp->paddr = TCV_PADDR_ITX; hp->tcvr_type = internal; ASD(("\n")); } else { printk(KERN_ERR "happy meal: Transceiver and a coke please."); hp->tcvr_type = none; /* Grrr... */ ASD(("\n")); } } } } /* The receive ring buffers are a bit tricky to get right. Here goes... * * The buffers we dma into must be 64 byte aligned. So we use a special * alloc_skb() routine for the happy meal to allocate 64 bytes more than * we really need. * * We use skb_reserve() to align the data block we get in the skb. We * also program the etxregs->cfg register to use an offset of 2. This * imperical constant plus the ethernet header size will always leave * us with a nicely aligned ip header once we pass things up to the * protocol layers. * * The numbers work out to: * * Max ethernet frame size 1518 * Ethernet header size 14 * Happy Meal base offset 2 * * Say a skb data area is at 0xf001b010, and its size alloced is * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes. * * First our alloc_skb() routine aligns the data base to a 64 byte * boundary. We now have 0xf001b040 as our skb data address. We * plug this into the receive descriptor address. * * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset. * So now the data we will end up looking at starts at 0xf001b042. When * the packet arrives, we will check out the size received and subtract * this from the skb->length. Then we just pass the packet up to the * protocols as is, and allocate a new skb to replace this slot we have * just received from. * * The ethernet layer will strip the ether header from the front of the * skb we just sent to it, this leaves us with the ip header sitting * nicely aligned at 0xf001b050. Also, for tcp and udp packets the * Happy Meal has even checksummed the tcp/udp data for us. The 16 * bit checksum is obtained from the low bits of the receive descriptor * flags, thus: * * skb->csum = rxd->rx_flags & 0xffff; * skb->ip_summed = CHECKSUM_COMPLETE; * * before sending off the skb to the protocols, and we are good as gold. */ static void happy_meal_clean_rings(struct happy_meal *hp) { int i; for (i = 0; i < RX_RING_SIZE; i++) { if (hp->rx_skbs[i] != NULL) { struct sk_buff *skb = hp->rx_skbs[i]; struct happy_meal_rxd *rxd; u32 dma_addr; rxd = &hp->happy_block->happy_meal_rxd[i]; dma_addr = hme_read_desc32(hp, &rxd->rx_addr); hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE); dev_kfree_skb_any(skb); hp->rx_skbs[i] = NULL; } } for (i = 0; i < TX_RING_SIZE; i++) { if (hp->tx_skbs[i] != NULL) { struct sk_buff *skb = hp->tx_skbs[i]; struct happy_meal_txd *txd; u32 dma_addr; int frag; hp->tx_skbs[i] = NULL; for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { txd = &hp->happy_block->happy_meal_txd[i]; dma_addr = hme_read_desc32(hp, &txd->tx_addr); hme_dma_unmap(hp, dma_addr, (hme_read_desc32(hp, &txd->tx_flags) & TXFLAG_SIZE), DMA_TODEVICE); if (frag != skb_shinfo(skb)->nr_frags) i++; } dev_kfree_skb_any(skb); } } } /* hp->happy_lock must be held */ static void happy_meal_init_rings(struct happy_meal *hp) { struct hmeal_init_block *hb = hp->happy_block; struct net_device *dev = hp->dev; int i; HMD(("happy_meal_init_rings: counters to zero, ")); hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; /* Free any skippy bufs left around in the rings. */ HMD(("clean, ")); happy_meal_clean_rings(hp); /* Now get new skippy bufs for the receive ring. */ HMD(("init rxring, ")); for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb; skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (!skb) { hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0); continue; } hp->rx_skbs[i] = skb; skb->dev = dev; /* Because we reserve afterwards. */ skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET)); hme_write_rxd(hp, &hb->happy_meal_rxd[i], (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)), hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE)); skb_reserve(skb, RX_OFFSET); } HMD(("init txring, ")); for (i = 0; i < TX_RING_SIZE; i++) hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0); HMD(("done\n")); } /* hp->happy_lock must be held */ static void happy_meal_begin_auto_negotiation(struct happy_meal *hp, void __iomem *tregs, struct ethtool_cmd *ep) { int timeout; /* Read all of the registers we are interested in now. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { /* Advertise everything we can support. */ if (hp->sw_bmsr & BMSR_10HALF) hp->sw_advertise |= (ADVERTISE_10HALF); else hp->sw_advertise &= ~(ADVERTISE_10HALF); if (hp->sw_bmsr & BMSR_10FULL) hp->sw_advertise |= (ADVERTISE_10FULL); else hp->sw_advertise &= ~(ADVERTISE_10FULL); if (hp->sw_bmsr & BMSR_100HALF) hp->sw_advertise |= (ADVERTISE_100HALF); else hp->sw_advertise &= ~(ADVERTISE_100HALF); if (hp->sw_bmsr & BMSR_100FULL) hp->sw_advertise |= (ADVERTISE_100FULL); else hp->sw_advertise &= ~(ADVERTISE_100FULL); happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); /* XXX Currently no Happy Meal cards I know off support 100BaseT4, * XXX and this is because the DP83840 does not support it, changes * XXX would need to be made to the tx/rx logic in the driver as well * XXX so I completely skip checking for it in the BMSR for now. */ #ifdef AUTO_SWITCH_DEBUG ASD(("%s: Advertising [ ", hp->dev->name)); if (hp->sw_advertise & ADVERTISE_10HALF) ASD(("10H ")); if (hp->sw_advertise & ADVERTISE_10FULL) ASD(("10F ")); if (hp->sw_advertise & ADVERTISE_100HALF) ASD(("100H ")); if (hp->sw_advertise & ADVERTISE_100FULL) ASD(("100F ")); #endif /* Enable Auto-Negotiation, this is usually on already... */ hp->sw_bmcr |= BMCR_ANENABLE; happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); /* Restart it to make sure it is going. */ hp->sw_bmcr |= BMCR_ANRESTART; happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); /* BMCR_ANRESTART self clears when the process has begun. */ timeout = 64; /* More than enough. */ while (--timeout) { hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); if (!(hp->sw_bmcr & BMCR_ANRESTART)) break; /* got it. */ udelay(10); } if (!timeout) { printk(KERN_ERR "%s: Happy Meal would not start auto negotiation " "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr); printk(KERN_NOTICE "%s: Performing force link detection.\n", hp->dev->name); goto force_link; } else { hp->timer_state = arbwait; } } else { force_link: /* Force the link up, trying first a particular mode. * Either we are here at the request of ethtool or * because the Happy Meal would not start to autoneg. */ /* Disable auto-negotiation in BMCR, enable the duplex and * speed setting, init the timer state machine, and fire it off. */ if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { hp->sw_bmcr = BMCR_SPEED100; } else { if (ep->speed == SPEED_100) hp->sw_bmcr = BMCR_SPEED100; else hp->sw_bmcr = 0; if (ep->duplex == DUPLEX_FULL) hp->sw_bmcr |= BMCR_FULLDPLX; } happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); if (!is_lucent_phy(hp)) { /* OK, seems we need do disable the transceiver for the first * tick to make sure we get an accurate link state at the * second tick. */ hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } hp->timer_state = ltrywait; } hp->timer_ticks = 0; hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ hp->happy_timer.data = (unsigned long) hp; hp->happy_timer.function = &happy_meal_timer; add_timer(&hp->happy_timer); } /* hp->happy_lock must be held */ static int happy_meal_init(struct happy_meal *hp) { void __iomem *gregs = hp->gregs; void __iomem *etxregs = hp->etxregs; void __iomem *erxregs = hp->erxregs; void __iomem *bregs = hp->bigmacregs; void __iomem *tregs = hp->tcvregs; u32 regtmp, rxcfg; unsigned char *e = &hp->dev->dev_addr[0]; /* If auto-negotiation timer is running, kill it. */ del_timer(&hp->happy_timer); HMD(("happy_meal_init: happy_flags[%08x] ", hp->happy_flags)); if (!(hp->happy_flags & HFLAG_INIT)) { HMD(("set HFLAG_INIT, ")); hp->happy_flags |= HFLAG_INIT; happy_meal_get_counters(hp, bregs); } /* Stop polling. */ HMD(("to happy_meal_poll_stop\n")); happy_meal_poll_stop(hp, tregs); /* Stop transmitter and receiver. */ HMD(("happy_meal_init: to happy_meal_stop\n")); happy_meal_stop(hp, gregs); /* Alloc and reset the tx/rx descriptor chains. */ HMD(("happy_meal_init: to happy_meal_init_rings\n")); happy_meal_init_rings(hp); /* Shut up the MIF. */ HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ", hme_read32(hp, tregs + TCVR_IMASK))); hme_write32(hp, tregs + TCVR_IMASK, 0xffff); /* See if we can enable the MIF frame on this card to speak to the DP83840. */ if (hp->happy_flags & HFLAG_FENABLE) { HMD(("use frame old[%08x], ", hme_read32(hp, tregs + TCVR_CFG))); hme_write32(hp, tregs + TCVR_CFG, hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); } else { HMD(("use bitbang old[%08x], ", hme_read32(hp, tregs + TCVR_CFG))); hme_write32(hp, tregs + TCVR_CFG, hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); } /* Check the state of the transceiver. */ HMD(("to happy_meal_transceiver_check\n")); happy_meal_transceiver_check(hp, tregs); /* Put the Big Mac into a sane state. */ HMD(("happy_meal_init: ")); switch(hp->tcvr_type) { case none: /* Cannot operate if we don't know the transceiver type! */ HMD(("AAIEEE no transceiver type, EAGAIN")); return -EAGAIN; case internal: /* Using the MII buffers. */ HMD(("internal, using MII, ")); hme_write32(hp, bregs + BMAC_XIFCFG, 0); break; case external: /* Not using the MII, disable it. */ HMD(("external, disable MII, ")); hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); break; }; if (happy_meal_tcvr_reset(hp, tregs)) return -EAGAIN; /* Reset the Happy Meal Big Mac transceiver and the receiver. */ HMD(("tx/rx reset, ")); happy_meal_tx_reset(hp, bregs); happy_meal_rx_reset(hp, bregs); /* Set jam size and inter-packet gaps to reasonable defaults. */ HMD(("jsize/ipg1/ipg2, ")); hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE); hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1); hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2); /* Load up the MAC address and random seed. */ HMD(("rseed/macaddr, ")); /* The docs recommend to use the 10LSB of our MAC here. */ hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff)); hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5])); hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3])); hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1])); HMD(("htable, ")); if ((hp->dev->flags & IFF_ALLMULTI) || (hp->dev->mc_count > 64)) { hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); } else if ((hp->dev->flags & IFF_PROMISC) == 0) { u16 hash_table[4]; struct dev_mc_list *dmi = hp->dev->mc_list; char *addrs; int i; u32 crc; for (i = 0; i < 4; i++) hash_table[i] = 0; for (i = 0; i < hp->dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; if (!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); } else { hme_write32(hp, bregs + BMAC_HTABLE3, 0); hme_write32(hp, bregs + BMAC_HTABLE2, 0); hme_write32(hp, bregs + BMAC_HTABLE1, 0); hme_write32(hp, bregs + BMAC_HTABLE0, 0); } /* Set the RX and TX ring ptrs. */ HMD(("ring ptrs rxr[%08x] txr[%08x]\n", ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)), ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)))); hme_write32(hp, erxregs + ERX_RING, ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))); hme_write32(hp, etxregs + ETX_RING, ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); /* Parity issues in the ERX unit of some HME revisions can cause some * registers to not be written unless their parity is even. Detect such * lost writes and simply rewrite with a low bit set (which will be ignored * since the rxring needs to be 2K aligned). */ if (hme_read32(hp, erxregs + ERX_RING) != ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))) hme_write32(hp, erxregs + ERX_RING, ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)) | 0x4); /* Set the supported burst sizes. */ HMD(("happy_meal_init: old[%08x] bursts<", hme_read32(hp, gregs + GREG_CFG))); #ifndef CONFIG_SPARC /* It is always PCI and can handle 64byte bursts. */ hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64); #else if ((hp->happy_bursts & DMA_BURST64) && ((hp->happy_flags & HFLAG_PCI) != 0 #ifdef CONFIG_SBUS || sbus_can_burst64(hp->happy_dev) #endif || 0)) { u32 gcfg = GREG_CFG_BURST64; /* I have no idea if I should set the extended * transfer mode bit for Cheerio, so for now I * do not. -DaveM */ #ifdef CONFIG_SBUS if ((hp->happy_flags & HFLAG_PCI) == 0 && sbus_can_dma_64bit(hp->happy_dev)) { sbus_set_sbus64(hp->happy_dev, hp->happy_bursts); gcfg |= GREG_CFG_64BIT; } #endif HMD(("64>")); hme_write32(hp, gregs + GREG_CFG, gcfg); } else if (hp->happy_bursts & DMA_BURST32) { HMD(("32>")); hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32); } else if (hp->happy_bursts & DMA_BURST16) { HMD(("16>")); hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16); } else { HMD(("XXX>")); hme_write32(hp, gregs + GREG_CFG, 0); } #endif /* CONFIG_SPARC */ /* Turn off interrupts we do not want to hear. */ HMD((", enable global interrupts, ")); hme_write32(hp, gregs + GREG_IMASK, (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP | GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR)); /* Set the transmit ring buffer size. */ HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE, hme_read32(hp, etxregs + ETX_RSIZE))); hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1); /* Enable transmitter DVMA. */ HMD(("tx dma enable old[%08x], ", hme_read32(hp, etxregs + ETX_CFG))); hme_write32(hp, etxregs + ETX_CFG, hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE); /* This chip really rots, for the receiver sometimes when you * write to its control registers not all the bits get there * properly. I cannot think of a sane way to provide complete * coverage for this hardware bug yet. */ HMD(("erx regs bug old[%08x]\n", hme_read32(hp, erxregs + ERX_CFG))); hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); regtmp = hme_read32(hp, erxregs + ERX_CFG); hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) { printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n"); printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n", ERX_CFG_DEFAULT(RX_OFFSET), regtmp); /* XXX Should return failure here... */ } /* Enable Big Mac hash table filter. */ HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ", hme_read32(hp, bregs + BMAC_RXCFG))); rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME; if (hp->dev->flags & IFF_PROMISC) rxcfg |= BIGMAC_RXCFG_PMISC; hme_write32(hp, bregs + BMAC_RXCFG, rxcfg); /* Let the bits settle in the chip. */ udelay(10); /* Ok, configure the Big Mac transmitter. */ HMD(("BIGMAC init, ")); regtmp = 0; if (hp->happy_flags & HFLAG_FULL) regtmp |= BIGMAC_TXCFG_FULLDPLX; /* Don't turn on the "don't give up" bit for now. It could cause hme * to deadlock with the PHY if a Jabber occurs. */ hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/); /* Give up after 16 TX attempts. */ hme_write32(hp, bregs + BMAC_ALIMIT, 16); /* Enable the output drivers no matter what. */ regtmp = BIGMAC_XCFG_ODENABLE; /* If card can do lance mode, enable it. */ if (hp->happy_flags & HFLAG_LANCE) regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE; /* Disable the MII buffers if using external transceiver. */ if (hp->tcvr_type == external) regtmp |= BIGMAC_XCFG_MIIDISAB; HMD(("XIF config old[%08x], ", hme_read32(hp, bregs + BMAC_XIFCFG))); hme_write32(hp, bregs + BMAC_XIFCFG, regtmp); /* Start things up. */ HMD(("tx old[%08x] and rx [%08x] ON!\n", hme_read32(hp, bregs + BMAC_TXCFG), hme_read32(hp, bregs + BMAC_RXCFG))); hme_write32(hp, bregs + BMAC_TXCFG, hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE); hme_write32(hp, bregs + BMAC_RXCFG, hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE); /* Get the autonegotiation started, and the watch timer ticking. */ happy_meal_begin_auto_negotiation(hp, tregs, NULL); /* Success. */ return 0; } /* hp->happy_lock must be held */ static void happy_meal_set_initial_advertisement(struct happy_meal *hp) { void __iomem *tregs = hp->tcvregs; void __iomem *bregs = hp->bigmacregs; void __iomem *gregs = hp->gregs; happy_meal_stop(hp, gregs); hme_write32(hp, tregs + TCVR_IMASK, 0xffff); if (hp->happy_flags & HFLAG_FENABLE) hme_write32(hp, tregs + TCVR_CFG, hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); else hme_write32(hp, tregs + TCVR_CFG, hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); happy_meal_transceiver_check(hp, tregs); switch(hp->tcvr_type) { case none: return; case internal: hme_write32(hp, bregs + BMAC_XIFCFG, 0); break; case external: hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); break; }; if (happy_meal_tcvr_reset(hp, tregs)) return; /* Latch PHY registers as of now. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); /* Advertise everything we can support. */ if (hp->sw_bmsr & BMSR_10HALF) hp->sw_advertise |= (ADVERTISE_10HALF); else hp->sw_advertise &= ~(ADVERTISE_10HALF); if (hp->sw_bmsr & BMSR_10FULL) hp->sw_advertise |= (ADVERTISE_10FULL); else hp->sw_advertise &= ~(ADVERTISE_10FULL); if (hp->sw_bmsr & BMSR_100HALF) hp->sw_advertise |= (ADVERTISE_100HALF); else hp->sw_advertise &= ~(ADVERTISE_100HALF); if (hp->sw_bmsr & BMSR_100FULL) hp->sw_advertise |= (ADVERTISE_100FULL); else hp->sw_advertise &= ~(ADVERTISE_100FULL); /* Update the PHY advertisement register. */ happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); } /* Once status is latched (by happy_meal_interrupt) it is cleared by * the hardware, so we cannot re-read it and get a correct value. * * hp->happy_lock must be held */ static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status) { int reset = 0; /* Only print messages for non-counter related interrupts. */ if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND | GREG_STAT_MAXPKTERR | GREG_STAT_RXERR | GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR | GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR | GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR | GREG_STAT_SLVPERR)) printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n", hp->dev->name, status); if (status & GREG_STAT_RFIFOVF) { /* Receive FIFO overflow is harmless and the hardware will take care of it, just some packets are lost. Who cares. */ printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name); } if (status & GREG_STAT_STSTERR) { /* BigMAC SQE link test failed. */ printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name); reset = 1; } if (status & GREG_STAT_TFIFO_UND) { /* Transmit FIFO underrun, again DMA error likely. */ printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n", hp->dev->name); reset = 1; } if (status & GREG_STAT_MAXPKTERR) { /* Driver error, tried to transmit something larger * than ethernet max mtu. */ printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name); reset = 1; } if (status & GREG_STAT_NORXD) { /* This is harmless, it just means the system is * quite loaded and the incoming packet rate was * faster than the interrupt handler could keep up * with. */ printk(KERN_INFO "%s: Happy Meal out of receive " "descriptors, packet dropped.\n", hp->dev->name); } if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) { /* All sorts of DMA receive errors. */ printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name); if (status & GREG_STAT_RXERR) printk("GenericError "); if (status & GREG_STAT_RXPERR) printk("ParityError "); if (status & GREG_STAT_RXTERR) printk("RxTagBotch "); printk("]\n"); reset = 1; } if (status & GREG_STAT_EOPERR) { /* Driver bug, didn't set EOP bit in tx descriptor given * to the happy meal. */ printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n", hp->dev->name); reset = 1; } if (status & GREG_STAT_MIFIRQ) { /* MIF signalled an interrupt, were we polling it? */ printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name); } if (status & (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) { /* All sorts of transmit DMA errors. */ printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name); if (status & GREG_STAT_TXEACK) printk("GenericError "); if (status & GREG_STAT_TXLERR) printk("LateError "); if (status & GREG_STAT_TXPERR) printk("ParityErro "); if (status & GREG_STAT_TXTERR) printk("TagBotch "); printk("]\n"); reset = 1; } if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) { /* Bus or parity error when cpu accessed happy meal registers * or it's internal FIFO's. Should never see this. */ printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n", hp->dev->name, (status & GREG_STAT_SLVPERR) ? "parity" : "generic"); reset = 1; } if (reset) { printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name); happy_meal_init(hp); return 1; } return 0; } /* hp->happy_lock must be held */ static void happy_meal_mif_interrupt(struct happy_meal *hp) { void __iomem *tregs = hp->tcvregs; printk(KERN_INFO "%s: Link status change.\n", hp->dev->name); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); /* Use the fastest transmission protocol possible. */ if (hp->sw_lpa & LPA_100FULL) { printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name); hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100); } else if (hp->sw_lpa & LPA_100HALF) { printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name); hp->sw_bmcr |= BMCR_SPEED100; } else if (hp->sw_lpa & LPA_10FULL) { printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name); hp->sw_bmcr |= BMCR_FULLDPLX; } else { printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name); } happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); /* Finally stop polling and shut up the MIF. */ happy_meal_poll_stop(hp, tregs); } #ifdef TXDEBUG #define TXD(x) printk x #else #define TXD(x) #endif /* hp->happy_lock must be held */ static void happy_meal_tx(struct happy_meal *hp) { struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; struct happy_meal_txd *this; struct net_device *dev = hp->dev; int elem; elem = hp->tx_old; TXD(("TX<")); while (elem != hp->tx_new) { struct sk_buff *skb; u32 flags, dma_addr, dma_len; int frag; TXD(("[%d]", elem)); this = &txbase[elem]; flags = hme_read_desc32(hp, &this->tx_flags); if (flags & TXFLAG_OWN) break; skb = hp->tx_skbs[elem]; if (skb_shinfo(skb)->nr_frags) { int last; last = elem + skb_shinfo(skb)->nr_frags; last &= (TX_RING_SIZE - 1); flags = hme_read_desc32(hp, &txbase[last].tx_flags); if (flags & TXFLAG_OWN) break; } hp->tx_skbs[elem] = NULL; hp->net_stats.tx_bytes += skb->len; for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { dma_addr = hme_read_desc32(hp, &this->tx_addr); dma_len = hme_read_desc32(hp, &this->tx_flags); dma_len &= TXFLAG_SIZE; hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE); elem = NEXT_TX(elem); this = &txbase[elem]; } dev_kfree_skb_irq(skb); hp->net_stats.tx_packets++; } hp->tx_old = elem; TXD((">")); if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1)) netif_wake_queue(dev); } #ifdef RXDEBUG #define RXD(x) printk x #else #define RXD(x) #endif /* Originally I used to handle the allocation failure by just giving back just * that one ring buffer to the happy meal. Problem is that usually when that * condition is triggered, the happy meal expects you to do something reasonable * with all of the packets it has DMA'd in. So now I just drop the entire * ring when we cannot get a new skb and give them all back to the happy meal, * maybe things will be "happier" now. * * hp->happy_lock must be held */ static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; int elem = hp->rx_new, drops = 0; u32 flags; RXD(("RX<")); this = &rxbase[elem]; while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) { struct sk_buff *skb; int len = flags >> 16; u16 csum = flags & RXFLAG_CSUM; u32 dma_addr = hme_read_desc32(hp, &this->rx_addr); RXD(("[%d ", elem)); /* Check for errors. */ if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if (len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if (len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } /* Return it to the Happy meal. */ drop_it: hp->net_stats.rx_dropped++; hme_write_rxd(hp, this, (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), dma_addr); goto next; } skb = hp->rx_skbs[elem]; if (len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (new_skb == NULL) { drops++; goto drop_it; } hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE); hp->rx_skbs[elem] = new_skb; new_skb->dev = dev; skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); hme_write_rxd(hp, this, (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE)); skb_reserve(new_skb, RX_OFFSET); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2); if (copy_skb == NULL) { drops++; goto drop_it; } copy_skb->dev = dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE); memcpy(copy_skb->data, skb->data, len); hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE); /* Reuse original ring buffer. */ hme_write_rxd(hp, this, (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), dma_addr); skb = copy_skb; } /* This card is _fucking_ hot... */ skb->csum = ntohs(csum ^ 0xffff); skb->ip_summed = CHECKSUM_COMPLETE; RXD(("len=%d csum=%4x]", len, csum)); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; hp->net_stats.rx_packets++; hp->net_stats.rx_bytes += len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; } hp->rx_new = elem; if (drops) printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } static irqreturn_t happy_meal_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct happy_meal *hp = netdev_priv(dev); u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); spin_lock(&hp->happy_lock); if (happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status)) goto out; } if (happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp); } if (happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); happy_meal_tx(hp); } if (happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); happy_meal_rx(hp, dev); } HMD(("done\n")); out: spin_unlock(&hp->happy_lock); return IRQ_HANDLED; } #ifdef CONFIG_SBUS static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie) { struct quattro *qp = (struct quattro *) cookie; int i; for (i = 0; i < 4; i++) { struct net_device *dev = qp->happy_meals[i]; struct happy_meal *hp = dev->priv; u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); HMD(("quattro_interrupt: status=%08x ", happy_status)); if (!(happy_status & (GREG_STAT_ERRORS | GREG_STAT_MIFIRQ | GREG_STAT_TXALL | GREG_STAT_RXTOHOST))) continue; spin_lock(&hp->happy_lock); if (happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if (happy_meal_is_not_so_happy(hp, happy_status)) goto next; } if (happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp); } if (happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); happy_meal_tx(hp); } if (happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); happy_meal_rx(hp, dev); } next: spin_unlock(&hp->happy_lock); } HMD(("done\n")); return IRQ_HANDLED; } #endif static int happy_meal_open(struct net_device *dev) { struct happy_meal *hp = dev->priv; int res; HMD(("happy_meal_open: ")); /* On SBUS Quattro QFE cards, all hme interrupts are concentrated * into a single source which we register handling at probe time. */ if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) { if (request_irq(dev->irq, &happy_meal_interrupt, IRQF_SHARED, dev->name, (void *)dev)) { HMD(("EAGAIN\n")); printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n", dev->irq); return -EAGAIN; } } HMD(("to happy_meal_init\n")); spin_lock_irq(&hp->happy_lock); res = happy_meal_init(hp); spin_unlock_irq(&hp->happy_lock); if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)) free_irq(dev->irq, dev); return res; } static int happy_meal_close(struct net_device *dev) { struct happy_meal *hp = dev->priv; spin_lock_irq(&hp->happy_lock); happy_meal_stop(hp, hp->gregs); happy_meal_clean_rings(hp); /* If auto-negotiation timer is running, kill it. */ del_timer(&hp->happy_timer); spin_unlock_irq(&hp->happy_lock); /* On Quattro QFE cards, all hme interrupts are concentrated * into a single source which we register handling at probe * time and never unregister. */ if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) free_irq(dev->irq, dev); return 0; } #ifdef SXDEBUG #define SXD(x) printk x #else #define SXD(x) #endif static void happy_meal_tx_timeout(struct net_device *dev) { struct happy_meal *hp = dev->priv; printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); tx_dump_log(); printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, hme_read32(hp, hp->gregs + GREG_STAT), hme_read32(hp, hp->etxregs + ETX_CFG), hme_read32(hp, hp->bigmacregs + BMAC_TXCFG)); spin_lock_irq(&hp->happy_lock); happy_meal_init(hp); spin_unlock_irq(&hp->happy_lock); netif_wake_queue(dev); } static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct happy_meal *hp = dev->priv; int entry; u32 tx_flags; tx_flags = TXFLAG_OWN; if (skb->ip_summed == CHECKSUM_PARTIAL) { u32 csum_start_off, csum_stuff_off; csum_start_off = (u32) (skb->h.raw - skb->data); csum_stuff_off = csum_start_off + skb->csum_offset; tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE | ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) | ((csum_stuff_off << 20) & TXFLAG_CSLOCATION)); } spin_lock_irq(&hp->happy_lock); if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) { netif_stop_queue(dev); spin_unlock_irq(&hp->happy_lock); printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", dev->name); return 1; } entry = hp->tx_new; SXD(("SX", len, entry)); hp->tx_skbs[entry] = skb; if (skb_shinfo(skb)->nr_frags == 0) { u32 mapping, len; len = skb->len; mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE); tx_flags |= (TXFLAG_SOP | TXFLAG_EOP); hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], (tx_flags | (len & TXFLAG_SIZE)), mapping); entry = NEXT_TX(entry); } else { u32 first_len, first_mapping; int frag, first_entry = entry; /* We must give this initial chunk to the device last. * Otherwise we could race with the device. */ first_len = skb_headlen(skb); first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE); entry = NEXT_TX(entry); for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; u32 len, mapping, this_txflags; len = this_frag->size; mapping = hme_dma_map(hp, ((void *) page_address(this_frag->page) + this_frag->page_offset), len, DMA_TODEVICE); this_txflags = tx_flags; if (frag == skb_shinfo(skb)->nr_frags - 1) this_txflags |= TXFLAG_EOP; hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], (this_txflags | (len & TXFLAG_SIZE)), mapping); entry = NEXT_TX(entry); } hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry], (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)), first_mapping); } hp->tx_new = entry; if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1)) netif_stop_queue(dev); /* Get it going. */ hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP); spin_unlock_irq(&hp->happy_lock); dev->trans_start = jiffies; tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); return 0; } static struct net_device_stats *happy_meal_get_stats(struct net_device *dev) { struct happy_meal *hp = dev->priv; spin_lock_irq(&hp->happy_lock); happy_meal_get_counters(hp, hp->bigmacregs); spin_unlock_irq(&hp->happy_lock); return &hp->net_stats; } static void happy_meal_set_multicast(struct net_device *dev) { struct happy_meal *hp = dev->priv; void __iomem *bregs = hp->bigmacregs; struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i; u32 crc; spin_lock_irq(&hp->happy_lock); netif_stop_queue(dev); if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); } else if (dev->flags & IFF_PROMISC) { hme_write32(hp, bregs + BMAC_RXCFG, hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC); } else { u16 hash_table[4]; for (i = 0; i < 4; i++) hash_table[i] = 0; for (i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; if (!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); } netif_wake_queue(dev); spin_unlock_irq(&hp->happy_lock); } /* Ethtool support... */ static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct happy_meal *hp = dev->priv; cmd->supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); /* XXX hardcoded stuff for now */ cmd->port = PORT_TP; /* XXX no MII support */ cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */ cmd->phy_address = 0; /* XXX fixed PHYAD */ /* Record PHY settings. */ spin_lock_irq(&hp->happy_lock); hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA); spin_unlock_irq(&hp->happy_lock); if (hp->sw_bmcr & BMCR_ANENABLE) { cmd->autoneg = AUTONEG_ENABLE; cmd->speed = (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? SPEED_100 : SPEED_10; if (cmd->speed == SPEED_100) cmd->duplex = (hp->sw_lpa & (LPA_100FULL)) ? DUPLEX_FULL : DUPLEX_HALF; else cmd->duplex = (hp->sw_lpa & (LPA_10FULL)) ? DUPLEX_FULL : DUPLEX_HALF; } else { cmd->autoneg = AUTONEG_DISABLE; cmd->speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10; cmd->duplex = (hp->sw_bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; } return 0; } static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct happy_meal *hp = dev->priv; /* Verify the settings we care about. */ if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) return -EINVAL; if (cmd->autoneg == AUTONEG_DISABLE && ((cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL))) return -EINVAL; /* Ok, do it to it. */ spin_lock_irq(&hp->happy_lock); del_timer(&hp->happy_timer); happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd); spin_unlock_irq(&hp->happy_lock); return 0; } static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct happy_meal *hp = dev->priv; strcpy(info->driver, "sunhme"); strcpy(info->version, "2.02"); if (hp->happy_flags & HFLAG_PCI) { struct pci_dev *pdev = hp->happy_dev; strcpy(info->bus_info, pci_name(pdev)); } #ifdef CONFIG_SBUS else { struct sbus_dev *sdev = hp->happy_dev; sprintf(info->bus_info, "SBUS:%d", sdev->slot); } #endif } static u32 hme_get_link(struct net_device *dev) { struct happy_meal *hp = dev->priv; spin_lock_irq(&hp->happy_lock); hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); spin_unlock_irq(&hp->happy_lock); return (hp->sw_bmsr & BMSR_LSTATUS); } static const struct ethtool_ops hme_ethtool_ops = { .get_settings = hme_get_settings, .set_settings = hme_set_settings, .get_drvinfo = hme_get_drvinfo, .get_link = hme_get_link, }; static int hme_version_printed; #ifdef CONFIG_SBUS void __devinit quattro_get_ranges(struct quattro *qp) { struct sbus_dev *sdev = qp->quattro_dev; int err; err = prom_getproperty(sdev->prom_node, "ranges", (char *)&qp->ranges[0], sizeof(qp->ranges)); if (err == 0 || err == -1) { qp->nranges = 0; return; } qp->nranges = (err / sizeof(struct linux_prom_ranges)); } static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp) { struct sbus_dev *sdev = hp->happy_dev; int rng; for (rng = 0; rng < qp->nranges; rng++) { struct linux_prom_ranges *rngp = &qp->ranges[rng]; int reg; for (reg = 0; reg < 5; reg++) { if (sdev->reg_addrs[reg].which_io == rngp->ot_child_space) break; } if (reg == 5) continue; sdev->reg_addrs[reg].which_io = rngp->ot_parent_space; sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base; } } /* Given a happy meal sbus device, find it's quattro parent. * If none exist, allocate and return a new one. * * Return NULL on failure. */ static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev) { struct sbus_dev *sdev; struct quattro *qp; int i; for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { for (i = 0, sdev = qp->quattro_dev; (sdev != NULL) && (i < 4); sdev = sdev->next, i++) { if (sdev == goal_sdev) return qp; } } qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); if (qp != NULL) { int i; for (i = 0; i < 4; i++) qp->happy_meals[i] = NULL; qp->quattro_dev = goal_sdev; qp->next = qfe_sbus_list; qfe_sbus_list = qp; quattro_get_ranges(qp); } return qp; } /* After all quattro cards have been probed, we call these functions * to register the IRQ handlers. */ static void __init quattro_sbus_register_irqs(void) { struct quattro *qp; for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { struct sbus_dev *sdev = qp->quattro_dev; int err; err = request_irq(sdev->irqs[0], quattro_sbus_interrupt, IRQF_SHARED, "Quattro", qp); if (err != 0) { printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err); panic("QFE request irq"); } } } static void quattro_sbus_free_irqs(void) { struct quattro *qp; for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { struct sbus_dev *sdev = qp->quattro_dev; free_irq(sdev->irqs[0], qp); } } #endif /* CONFIG_SBUS */ #ifdef CONFIG_PCI static struct quattro * __init quattro_pci_find(struct pci_dev *pdev) { struct pci_dev *bdev = pdev->bus->self; struct quattro *qp; if (!bdev) return NULL; for (qp = qfe_pci_list; qp != NULL; qp = qp->next) { struct pci_dev *qpdev = qp->quattro_dev; if (qpdev == bdev) return qp; } qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); if (qp != NULL) { int i; for (i = 0; i < 4; i++) qp->happy_meals[i] = NULL; qp->quattro_dev = bdev; qp->next = qfe_pci_list; qfe_pci_list = qp; /* No range tricks necessary on PCI. */ qp->nranges = 0; } return qp; } #endif /* CONFIG_PCI */ #ifdef CONFIG_SBUS static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe) { struct device_node *dp = sdev->ofdev.node; struct quattro *qp = NULL; struct happy_meal *hp; struct net_device *dev; int i, qfe_slot = -1; int err = -ENODEV; if (is_qfe) { qp = quattro_sbus_find(sdev); if (qp == NULL) goto err_out; for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) if (qp->happy_meals[qfe_slot] == NULL) break; if (qfe_slot == 4) goto err_out; } err = -ENOMEM; dev = alloc_etherdev(sizeof(struct happy_meal)); if (!dev) goto err_out; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &sdev->ofdev.dev); if (hme_version_printed++ == 0) printk(KERN_INFO "%s", version); /* If user did not specify a MAC address specifically, use * the Quattro local-mac-address property... */ for (i = 0; i < 6; i++) { if (macaddr[i] != 0) break; } if (i < 6) { /* a mac address was given */ for (i = 0; i < 6; i++) dev->dev_addr[i] = macaddr[i]; macaddr[5]++; } else { unsigned char *addr; int len; addr = of_get_property(dp, "local-mac-address", &len); if (qfe_slot != -1 && addr && len == 6) memcpy(dev->dev_addr, addr, 6); else memcpy(dev->dev_addr, idprom->id_ethaddr, 6); } hp = dev->priv; hp->happy_dev = sdev; spin_lock_init(&hp->happy_lock); err = -ENODEV; if (sdev->num_registers != 5) { printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n", sdev->num_registers); goto err_out_free_netdev; } if (qp != NULL) { hp->qfe_parent = qp; hp->qfe_ent = qfe_slot; qp->happy_meals[qfe_slot] = dev; quattro_apply_ranges(qp, hp); } hp->gregs = sbus_ioremap(&sdev->resource[0], 0, GREG_REG_SIZE, "HME Global Regs"); if (!hp->gregs) { printk(KERN_ERR "happymeal: Cannot map global registers.\n"); goto err_out_free_netdev; } hp->etxregs = sbus_ioremap(&sdev->resource[1], 0, ETX_REG_SIZE, "HME TX Regs"); if (!hp->etxregs) { printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n"); goto err_out_iounmap; } hp->erxregs = sbus_ioremap(&sdev->resource[2], 0, ERX_REG_SIZE, "HME RX Regs"); if (!hp->erxregs) { printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n"); goto err_out_iounmap; } hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0, BMAC_REG_SIZE, "HME BIGMAC Regs"); if (!hp->bigmacregs) { printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n"); goto err_out_iounmap; } hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0, TCVR_REG_SIZE, "HME Tranceiver Regs"); if (!hp->tcvregs) { printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n"); goto err_out_iounmap; } hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff); if (hp->hm_revision == 0xff) hp->hm_revision = 0xa0; /* Now enable the feature flags we can. */ if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) hp->happy_flags = HFLAG_20_21; else if (hp->hm_revision != 0xa0) hp->happy_flags = HFLAG_NOT_A0; if (qp != NULL) hp->happy_flags |= HFLAG_QUATTRO; /* Get the supported DVMA burst sizes from our Happy SBUS. */ hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node, "burst-sizes", 0x00); hp->happy_block = sbus_alloc_consistent(hp->happy_dev, PAGE_SIZE, &hp->hblock_dvma); err = -ENOMEM; if (!hp->happy_block) { printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n"); goto err_out_iounmap; } /* Force check of the link first time we are brought up. */ hp->linkcheck = 0; /* Force timer state to 'asleep' with count of zero. */ hp->timer_state = asleep; hp->timer_ticks = 0; init_timer(&hp->happy_timer); hp->dev = dev; dev->open = &happy_meal_open; dev->stop = &happy_meal_close; dev->hard_start_xmit = &happy_meal_start_xmit; dev->get_stats = &happy_meal_get_stats; dev->set_multicast_list = &happy_meal_set_multicast; dev->tx_timeout = &happy_meal_tx_timeout; dev->watchdog_timeo = 5*HZ; dev->ethtool_ops = &hme_ethtool_ops; /* Happy Meal can do it all... except VLAN. */ dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED; dev->irq = sdev->irqs[0]; #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) /* Hook up PCI register/dma accessors. */ hp->read_desc32 = sbus_hme_read_desc32; hp->write_txd = sbus_hme_write_txd; hp->write_rxd = sbus_hme_write_rxd; hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single; hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single; hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int)) sbus_dma_sync_single_for_cpu; hp->dma_sync_for_device = (void (*)(void *, u32, long, int)) sbus_dma_sync_single_for_device; hp->read32 = sbus_hme_read32; hp->write32 = sbus_hme_write32; #endif /* Grrr, Happy Meal comes up by default not advertising * full duplex 100baseT capabilities, fix this. */ spin_lock_irq(&hp->happy_lock); happy_meal_set_initial_advertisement(hp); spin_unlock_irq(&hp->happy_lock); if (register_netdev(hp->dev)) { printk(KERN_ERR "happymeal: Cannot register net device, " "aborting.\n"); goto err_out_free_consistent; } dev_set_drvdata(&sdev->ofdev.dev, hp); if (qfe_slot != -1) printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ", dev->name, qfe_slot); else printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ", dev->name); for (i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); printk("\n"); return 0; err_out_free_consistent: sbus_free_consistent(hp->happy_dev, PAGE_SIZE, hp->happy_block, hp->hblock_dvma); err_out_iounmap: if (hp->gregs) sbus_iounmap(hp->gregs, GREG_REG_SIZE); if (hp->etxregs) sbus_iounmap(hp->etxregs, ETX_REG_SIZE); if (hp->erxregs) sbus_iounmap(hp->erxregs, ERX_REG_SIZE); if (hp->bigmacregs) sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE); if (hp->tcvregs) sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE); err_out_free_netdev: free_netdev(dev); err_out: return err; } #endif #ifdef CONFIG_PCI #ifndef CONFIG_SPARC static int is_quattro_p(struct pci_dev *pdev) { struct pci_dev *busdev = pdev->bus->self; struct list_head *tmp; int n_hmes; if (busdev == NULL || busdev->vendor != PCI_VENDOR_ID_DEC || busdev->device != PCI_DEVICE_ID_DEC_21153) return 0; n_hmes = 0; tmp = pdev->bus->devices.next; while (tmp != &pdev->bus->devices) { struct pci_dev *this_pdev = pci_dev_b(tmp); if (this_pdev->vendor == PCI_VENDOR_ID_SUN && this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL) n_hmes++; tmp = tmp->next; } if (n_hmes != 4) return 0; return 1; } /* Fetch MAC address from vital product data of PCI ROM. */ static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr) { int this_offset; for (this_offset = 0x20; this_offset < len; this_offset++) { void __iomem *p = rom_base + this_offset; if (readb(p + 0) != 0x90 || readb(p + 1) != 0x00 || readb(p + 2) != 0x09 || readb(p + 3) != 0x4e || readb(p + 4) != 0x41 || readb(p + 5) != 0x06) continue; this_offset += 6; p += 6; if (index == 0) { int i; for (i = 0; i < 6; i++) dev_addr[i] = readb(p + i); return 1; } index--; } return 0; } static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr) { size_t size; void __iomem *p = pci_map_rom(pdev, &size); if (p) { int index = 0; int found; if (is_quattro_p(pdev)) index = PCI_SLOT(pdev->devfn); found = readb(p) == 0x55 && readb(p + 1) == 0xaa && find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr); pci_unmap_rom(pdev, p); if (found) return; } /* Sun MAC prefix then 3 random bytes. */ dev_addr[0] = 0x08; dev_addr[1] = 0x00; dev_addr[2] = 0x20; get_random_bytes(&dev_addr[3], 3); return; } #endif /* !(CONFIG_SPARC) */ static int __devinit happy_meal_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct quattro *qp = NULL; #ifdef CONFIG_SPARC struct pcidev_cookie *pcp; #endif struct happy_meal *hp; struct net_device *dev; void __iomem *hpreg_base; unsigned long hpreg_res; int i, qfe_slot = -1; char prom_name[64]; int err; /* Now make sure pci_dev cookie is there. */ #ifdef CONFIG_SPARC pcp = pdev->sysdata; if (pcp == NULL) { printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n"); return -ENODEV; } strcpy(prom_name, pcp->prom_node->name); #else if (is_quattro_p(pdev)) strcpy(prom_name, "SUNW,qfe"); else strcpy(prom_name, "SUNW,hme"); #endif err = -ENODEV; if (pci_enable_device(pdev)) goto err_out; pci_set_master(pdev); if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) { qp = quattro_pci_find(pdev); if (qp == NULL) goto err_out; for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) if (qp->happy_meals[qfe_slot] == NULL) break; if (qfe_slot == 4) goto err_out; } dev = alloc_etherdev(sizeof(struct happy_meal)); err = -ENOMEM; if (!dev) goto err_out; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); if (hme_version_printed++ == 0) printk(KERN_INFO "%s", version); dev->base_addr = (long) pdev; hp = (struct happy_meal *)dev->priv; memset(hp, 0, sizeof(*hp)); hp->happy_dev = pdev; spin_lock_init(&hp->happy_lock); if (qp != NULL) { hp->qfe_parent = qp; hp->qfe_ent = qfe_slot; qp->happy_meals[qfe_slot] = dev; } hpreg_res = pci_resource_start(pdev, 0); err = -ENODEV; if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n"); goto err_out_clear_quattro; } if (pci_request_regions(pdev, DRV_NAME)) { printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, " "aborting.\n"); goto err_out_clear_quattro; } if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) { printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n"); goto err_out_free_res; } for (i = 0; i < 6; i++) { if (macaddr[i] != 0) break; } if (i < 6) { /* a mac address was given */ for (i = 0; i < 6; i++) dev->dev_addr[i] = macaddr[i]; macaddr[5]++; } else { #ifdef CONFIG_SPARC unsigned char *addr; int len; if (qfe_slot != -1 && (addr = of_get_property(pcp->prom_node, "local-mac-address", &len)) != NULL && len == 6) { memcpy(dev->dev_addr, addr, 6); } else { memcpy(dev->dev_addr, idprom->id_ethaddr, 6); } #else get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]); #endif } /* Layout registers. */ hp->gregs = (hpreg_base + 0x0000UL); hp->etxregs = (hpreg_base + 0x2000UL); hp->erxregs = (hpreg_base + 0x4000UL); hp->bigmacregs = (hpreg_base + 0x6000UL); hp->tcvregs = (hpreg_base + 0x7000UL); #ifdef CONFIG_SPARC hp->hm_revision = of_getintprop_default(pcp->prom_node, "hm-rev", 0xff); if (hp->hm_revision == 0xff) { unsigned char prev; pci_read_config_byte(pdev, PCI_REVISION_ID, &prev); hp->hm_revision = 0xc0 | (prev & 0x0f); } #else /* works with this on non-sparc hosts */ hp->hm_revision = 0x20; #endif /* Now enable the feature flags we can. */ if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) hp->happy_flags = HFLAG_20_21; else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0) hp->happy_flags = HFLAG_NOT_A0; if (qp != NULL) hp->happy_flags |= HFLAG_QUATTRO; /* And of course, indicate this is PCI. */ hp->happy_flags |= HFLAG_PCI; #ifdef CONFIG_SPARC /* Assume PCI happy meals can handle all burst sizes. */ hp->happy_bursts = DMA_BURSTBITS; #endif hp->happy_block = (struct hmeal_init_block *) pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma); err = -ENODEV; if (!hp->happy_block) { printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n"); goto err_out_iounmap; } hp->linkcheck = 0; hp->timer_state = asleep; hp->timer_ticks = 0; init_timer(&hp->happy_timer); hp->dev = dev; dev->open = &happy_meal_open; dev->stop = &happy_meal_close; dev->hard_start_xmit = &happy_meal_start_xmit; dev->get_stats = &happy_meal_get_stats; dev->set_multicast_list = &happy_meal_set_multicast; dev->tx_timeout = &happy_meal_tx_timeout; dev->watchdog_timeo = 5*HZ; dev->ethtool_ops = &hme_ethtool_ops; dev->irq = pdev->irq; dev->dma = 0; /* Happy Meal can do it all... */ dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM; #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) /* Hook up PCI register/dma accessors. */ hp->read_desc32 = pci_hme_read_desc32; hp->write_txd = pci_hme_write_txd; hp->write_rxd = pci_hme_write_rxd; hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single; hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single; hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int)) pci_dma_sync_single_for_cpu; hp->dma_sync_for_device = (void (*)(void *, u32, long, int)) pci_dma_sync_single_for_device; hp->read32 = pci_hme_read32; hp->write32 = pci_hme_write32; #endif /* Grrr, Happy Meal comes up by default not advertising * full duplex 100baseT capabilities, fix this. */ spin_lock_irq(&hp->happy_lock); happy_meal_set_initial_advertisement(hp); spin_unlock_irq(&hp->happy_lock); if (register_netdev(hp->dev)) { printk(KERN_ERR "happymeal(PCI): Cannot register net device, " "aborting.\n"); goto err_out_iounmap; } dev_set_drvdata(&pdev->dev, hp); if (!qfe_slot) { struct pci_dev *qpdev = qp->quattro_dev; prom_name[0] = 0; if (!strncmp(dev->name, "eth", 3)) { int i = simple_strtoul(dev->name + 3, NULL, 10); sprintf(prom_name, "-%d", i + 3); } printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name); if (qpdev->vendor == PCI_VENDOR_ID_DEC && qpdev->device == PCI_DEVICE_ID_DEC_21153) printk("DEC 21153 PCI Bridge\n"); else printk("unknown bridge %04x.%04x\n", qpdev->vendor, qpdev->device); } if (qfe_slot != -1) printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, qfe_slot); else printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ", dev->name); for (i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); printk("\n"); return 0; err_out_iounmap: iounmap(hp->gregs); err_out_free_res: pci_release_regions(pdev); err_out_clear_quattro: if (qp != NULL) qp->happy_meals[qfe_slot] = NULL; free_netdev(dev); err_out: return err; } static void __devexit happy_meal_pci_remove(struct pci_dev *pdev) { struct happy_meal *hp = dev_get_drvdata(&pdev->dev); struct net_device *net_dev = hp->dev; unregister_netdev(net_dev); pci_free_consistent(hp->happy_dev, PAGE_SIZE, hp->happy_block, hp->hblock_dvma); iounmap(hp->gregs); pci_release_regions(hp->happy_dev); free_netdev(net_dev); dev_set_drvdata(&pdev->dev, NULL); } static struct pci_device_id happymeal_pci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(pci, happymeal_pci_ids); static struct pci_driver hme_pci_driver = { .name = "hme", .id_table = happymeal_pci_ids, .probe = happy_meal_pci_probe, .remove = __devexit_p(happy_meal_pci_remove), }; static int __init happy_meal_pci_init(void) { return pci_register_driver(&hme_pci_driver); } static void happy_meal_pci_exit(void) { pci_unregister_driver(&hme_pci_driver); while (qfe_pci_list) { struct quattro *qfe = qfe_pci_list; struct quattro *next = qfe->next; kfree(qfe); qfe_pci_list = next; } } #endif #ifdef CONFIG_SBUS static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match) { struct sbus_dev *sdev = to_sbus_device(&dev->dev); struct device_node *dp = dev->node; char *model = of_get_property(dp, "model", NULL); int is_qfe = (match->data != NULL); if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe")) is_qfe = 1; return happy_meal_sbus_probe_one(sdev, is_qfe); } static int __devexit hme_sbus_remove(struct of_device *dev) { struct happy_meal *hp = dev_get_drvdata(&dev->dev); struct net_device *net_dev = hp->dev; unregister_netdevice(net_dev); /* XXX qfe parent interrupt... */ sbus_iounmap(hp->gregs, GREG_REG_SIZE); sbus_iounmap(hp->etxregs, ETX_REG_SIZE); sbus_iounmap(hp->erxregs, ERX_REG_SIZE); sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE); sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE); sbus_free_consistent(hp->happy_dev, PAGE_SIZE, hp->happy_block, hp->hblock_dvma); free_netdev(net_dev); dev_set_drvdata(&dev->dev, NULL); return 0; } static struct of_device_id hme_sbus_match[] = { { .name = "SUNW,hme", }, { .name = "SUNW,qfe", .data = (void *) 1, }, { .name = "qfe", .data = (void *) 1, }, {}, }; MODULE_DEVICE_TABLE(of, hme_sbus_match); static struct of_platform_driver hme_sbus_driver = { .name = "hme", .match_table = hme_sbus_match, .probe = hme_sbus_probe, .remove = __devexit_p(hme_sbus_remove), }; static int __init happy_meal_sbus_init(void) { int err; err = of_register_driver(&hme_sbus_driver, &sbus_bus_type); if (!err) quattro_sbus_register_irqs(); return err; } static void happy_meal_sbus_exit(void) { of_unregister_driver(&hme_sbus_driver); quattro_sbus_free_irqs(); while (qfe_sbus_list) { struct quattro *qfe = qfe_sbus_list; struct quattro *next = qfe->next; kfree(qfe); qfe_sbus_list = next; } } #endif static int __init happy_meal_probe(void) { int err = 0; #ifdef CONFIG_SBUS err = happy_meal_sbus_init(); #endif #ifdef CONFIG_PCI if (!err) { err = happy_meal_pci_init(); #ifdef CONFIG_SBUS if (err) happy_meal_sbus_exit(); #endif } #endif return err; } static void __exit happy_meal_exit(void) { #ifdef CONFIG_SBUS happy_meal_sbus_exit(); #endif #ifdef CONFIG_PCI happy_meal_pci_exit(); #endif } module_init(happy_meal_probe); module_exit(happy_meal_exit);