/* * linux/drivers/ide/pci/cmd64x.c Version 1.50 May 10, 2007 * * cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines. * Due to massive hardware bugs, UltraDMA is only supported * on the 646U2 and not on the 646U. * * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1998 David S. Miller (davem@redhat.com) * * Copyright (C) 1999-2002 Andre Hedrick * Copyright (C) 2007 MontaVista Software, Inc. */ #include #include #include #include #include #include #include #include #define DISPLAY_CMD64X_TIMINGS #define CMD_DEBUG 0 #if CMD_DEBUG #define cmdprintk(x...) printk(x) #else #define cmdprintk(x...) #endif /* * CMD64x specific registers definition. */ #define CFR 0x50 #define CFR_INTR_CH0 0x04 #define CNTRL 0x51 #define CNTRL_ENA_1ST 0x04 #define CNTRL_ENA_2ND 0x08 #define CNTRL_DIS_RA0 0x40 #define CNTRL_DIS_RA1 0x80 #define CMDTIM 0x52 #define ARTTIM0 0x53 #define DRWTIM0 0x54 #define ARTTIM1 0x55 #define DRWTIM1 0x56 #define ARTTIM23 0x57 #define ARTTIM23_DIS_RA2 0x04 #define ARTTIM23_DIS_RA3 0x08 #define ARTTIM23_INTR_CH1 0x10 #define DRWTIM2 0x58 #define BRST 0x59 #define DRWTIM3 0x5b #define BMIDECR0 0x70 #define MRDMODE 0x71 #define MRDMODE_INTR_CH0 0x04 #define MRDMODE_INTR_CH1 0x08 #define MRDMODE_BLK_CH0 0x10 #define MRDMODE_BLK_CH1 0x20 #define BMIDESR0 0x72 #define UDIDETCR0 0x73 #define DTPR0 0x74 #define BMIDECR1 0x78 #define BMIDECSR 0x79 #define BMIDESR1 0x7A #define UDIDETCR1 0x7B #define DTPR1 0x7C #if defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_IDE_PROC_FS) #include #include static u8 cmd64x_proc = 0; #define CMD_MAX_DEVS 5 static struct pci_dev *cmd_devs[CMD_MAX_DEVS]; static int n_cmd_devs; static char * print_cmd64x_get_info (char *buf, struct pci_dev *dev, int index) { char *p = buf; u8 reg72 = 0, reg73 = 0; /* primary */ u8 reg7a = 0, reg7b = 0; /* secondary */ u8 reg50 = 1, reg51 = 1, reg57 = 0, reg71 = 0; /* extra */ u8 rev = 0; p += sprintf(p, "\nController: %d\n", index); p += sprintf(p, "PCI-%x Chipset.\n", dev->device); (void) pci_read_config_byte(dev, CFR, ®50); (void) pci_read_config_byte(dev, CNTRL, ®51); (void) pci_read_config_byte(dev, ARTTIM23, ®57); (void) pci_read_config_byte(dev, MRDMODE, ®71); (void) pci_read_config_byte(dev, BMIDESR0, ®72); (void) pci_read_config_byte(dev, UDIDETCR0, ®73); (void) pci_read_config_byte(dev, BMIDESR1, ®7a); (void) pci_read_config_byte(dev, UDIDETCR1, ®7b); /* PCI0643/6 originally didn't have the primary channel enable bit */ (void) pci_read_config_byte(dev, PCI_REVISION_ID, &rev); if ((dev->device == PCI_DEVICE_ID_CMD_643) || (dev->device == PCI_DEVICE_ID_CMD_646 && rev < 3)) reg51 |= CNTRL_ENA_1ST; p += sprintf(p, "---------------- Primary Channel " "---------------- Secondary Channel ------------\n"); p += sprintf(p, " %s %s\n", (reg51 & CNTRL_ENA_1ST) ? "enabled " : "disabled", (reg51 & CNTRL_ENA_2ND) ? "enabled " : "disabled"); p += sprintf(p, "---------------- drive0 --------- drive1 " "-------- drive0 --------- drive1 ------\n"); p += sprintf(p, "DMA enabled: %s %s" " %s %s\n", (reg72 & 0x20) ? "yes" : "no ", (reg72 & 0x40) ? "yes" : "no ", (reg7a & 0x20) ? "yes" : "no ", (reg7a & 0x40) ? "yes" : "no "); p += sprintf(p, "UltraDMA mode: %s (%c) %s (%c)", ( reg73 & 0x01) ? " on" : "off", ((reg73 & 0x30) == 0x30) ? ((reg73 & 0x04) ? '3' : '0') : ((reg73 & 0x30) == 0x20) ? ((reg73 & 0x04) ? '3' : '1') : ((reg73 & 0x30) == 0x10) ? ((reg73 & 0x04) ? '4' : '2') : ((reg73 & 0x30) == 0x00) ? ((reg73 & 0x04) ? '5' : '2') : '?', ( reg73 & 0x02) ? " on" : "off", ((reg73 & 0xC0) == 0xC0) ? ((reg73 & 0x08) ? '3' : '0') : ((reg73 & 0xC0) == 0x80) ? ((reg73 & 0x08) ? '3' : '1') : ((reg73 & 0xC0) == 0x40) ? ((reg73 & 0x08) ? '4' : '2') : ((reg73 & 0xC0) == 0x00) ? ((reg73 & 0x08) ? '5' : '2') : '?'); p += sprintf(p, " %s (%c) %s (%c)\n", ( reg7b & 0x01) ? " on" : "off", ((reg7b & 0x30) == 0x30) ? ((reg7b & 0x04) ? '3' : '0') : ((reg7b & 0x30) == 0x20) ? ((reg7b & 0x04) ? '3' : '1') : ((reg7b & 0x30) == 0x10) ? ((reg7b & 0x04) ? '4' : '2') : ((reg7b & 0x30) == 0x00) ? ((reg7b & 0x04) ? '5' : '2') : '?', ( reg7b & 0x02) ? " on" : "off", ((reg7b & 0xC0) == 0xC0) ? ((reg7b & 0x08) ? '3' : '0') : ((reg7b & 0xC0) == 0x80) ? ((reg7b & 0x08) ? '3' : '1') : ((reg7b & 0xC0) == 0x40) ? ((reg7b & 0x08) ? '4' : '2') : ((reg7b & 0xC0) == 0x00) ? ((reg7b & 0x08) ? '5' : '2') : '?'); p += sprintf(p, "Interrupt: %s, %s %s, %s\n", (reg71 & MRDMODE_BLK_CH0 ) ? "blocked" : "enabled", (reg50 & CFR_INTR_CH0 ) ? "pending" : "clear ", (reg71 & MRDMODE_BLK_CH1 ) ? "blocked" : "enabled", (reg57 & ARTTIM23_INTR_CH1) ? "pending" : "clear "); return (char *)p; } static int cmd64x_get_info (char *buffer, char **addr, off_t offset, int count) { char *p = buffer; int i; for (i = 0; i < n_cmd_devs; i++) { struct pci_dev *dev = cmd_devs[i]; p = print_cmd64x_get_info(p, dev, i); } return p-buffer; /* => must be less than 4k! */ } #endif /* defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_IDE_PROC_FS) */ static u8 quantize_timing(int timing, int quant) { return (timing + quant - 1) / quant; } /* * This routine calculates active/recovery counts and then writes them into * the chipset registers. */ static void program_cycle_times (ide_drive_t *drive, int cycle_time, int active_time) { struct pci_dev *dev = HWIF(drive)->pci_dev; int clock_time = 1000 / system_bus_clock(); u8 cycle_count, active_count, recovery_count, drwtim; static const u8 recovery_values[] = {15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0}; static const u8 drwtim_regs[4] = {DRWTIM0, DRWTIM1, DRWTIM2, DRWTIM3}; cmdprintk("program_cycle_times parameters: total=%d, active=%d\n", cycle_time, active_time); cycle_count = quantize_timing( cycle_time, clock_time); active_count = quantize_timing(active_time, clock_time); recovery_count = cycle_count - active_count; /* * In case we've got too long recovery phase, try to lengthen * the active phase */ if (recovery_count > 16) { active_count += recovery_count - 16; recovery_count = 16; } if (active_count > 16) /* shouldn't actually happen... */ active_count = 16; cmdprintk("Final counts: total=%d, active=%d, recovery=%d\n", cycle_count, active_count, recovery_count); /* * Convert values to internal chipset representation */ recovery_count = recovery_values[recovery_count]; active_count &= 0x0f; /* Program the active/recovery counts into the DRWTIM register */ drwtim = (active_count << 4) | recovery_count; (void) pci_write_config_byte(dev, drwtim_regs[drive->dn], drwtim); cmdprintk("Write 0x%02x to reg 0x%x\n", drwtim, drwtim_regs[drive->dn]); } /* * This routine selects drive's best PIO mode and writes into the chipset * registers setup/active/recovery timings. */ static u8 cmd64x_tune_pio (ide_drive_t *drive, u8 mode_wanted) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = hwif->pci_dev; ide_pio_data_t pio; u8 pio_mode, setup_count, arttim = 0; static const u8 setup_values[] = {0x40, 0x40, 0x40, 0x80, 0, 0xc0}; static const u8 arttim_regs[4] = {ARTTIM0, ARTTIM1, ARTTIM23, ARTTIM23}; pio_mode = ide_get_best_pio_mode(drive, mode_wanted, 5, &pio); cmdprintk("%s: PIO mode wanted %d, selected %d (%d ns)%s\n", drive->name, mode_wanted, pio_mode, pio.cycle_time, pio.overridden ? " (overriding vendor mode)" : ""); program_cycle_times(drive, pio.cycle_time, ide_pio_timings[pio_mode].active_time); setup_count = quantize_timing(ide_pio_timings[pio_mode].setup_time, 1000 / system_bus_clock()); /* * The primary channel has individual address setup timing registers * for each drive and the hardware selects the slowest timing itself. * The secondary channel has one common register and we have to select * the slowest address setup timing ourselves. */ if (hwif->channel) { ide_drive_t *drives = hwif->drives; drive->drive_data = setup_count; setup_count = max(drives[0].drive_data, drives[1].drive_data); } if (setup_count > 5) /* shouldn't actually happen... */ setup_count = 5; cmdprintk("Final address setup count: %d\n", setup_count); /* * Program the address setup clocks into the ARTTIM registers. * Avoid clearing the secondary channel's interrupt bit. */ (void) pci_read_config_byte (dev, arttim_regs[drive->dn], &arttim); if (hwif->channel) arttim &= ~ARTTIM23_INTR_CH1; arttim &= ~0xc0; arttim |= setup_values[setup_count]; (void) pci_write_config_byte(dev, arttim_regs[drive->dn], arttim); cmdprintk("Write 0x%02x to reg 0x%x\n", arttim, arttim_regs[drive->dn]); return pio_mode; } /* * Attempts to set drive's PIO mode. * Special cases are 8: prefetch off, 9: prefetch on (both never worked), * and 255: auto-select best mode (used at boot time). */ static void cmd64x_tune_drive (ide_drive_t *drive, u8 pio) { /* * Filter out the prefetch control values * to prevent PIO5 from being programmed */ if (pio == 8 || pio == 9) return; pio = cmd64x_tune_pio(drive, pio); (void) ide_config_drive_speed(drive, XFER_PIO_0 + pio); } static int cmd64x_tune_chipset (ide_drive_t *drive, u8 speed) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = hwif->pci_dev; u8 unit = drive->dn & 0x01; u8 regU = 0, pciU = hwif->channel ? UDIDETCR1 : UDIDETCR0; speed = ide_rate_filter(drive, speed); if (speed >= XFER_SW_DMA_0) { (void) pci_read_config_byte(dev, pciU, ®U); regU &= ~(unit ? 0xCA : 0x35); } switch(speed) { case XFER_UDMA_5: regU |= unit ? 0x0A : 0x05; break; case XFER_UDMA_4: regU |= unit ? 0x4A : 0x15; break; case XFER_UDMA_3: regU |= unit ? 0x8A : 0x25; break; case XFER_UDMA_2: regU |= unit ? 0x42 : 0x11; break; case XFER_UDMA_1: regU |= unit ? 0x82 : 0x21; break; case XFER_UDMA_0: regU |= unit ? 0xC2 : 0x31; break; case XFER_MW_DMA_2: program_cycle_times(drive, 120, 70); break; case XFER_MW_DMA_1: program_cycle_times(drive, 150, 80); break; case XFER_MW_DMA_0: program_cycle_times(drive, 480, 215); break; case XFER_PIO_5: case XFER_PIO_4: case XFER_PIO_3: case XFER_PIO_2: case XFER_PIO_1: case XFER_PIO_0: (void) cmd64x_tune_pio(drive, speed - XFER_PIO_0); break; default: return 1; } if (speed >= XFER_SW_DMA_0) (void) pci_write_config_byte(dev, pciU, regU); return ide_config_drive_speed(drive, speed); } static int cmd64x_config_drive_for_dma (ide_drive_t *drive) { if (ide_tune_dma(drive)) return 0; if (ide_use_fast_pio(drive)) cmd64x_tune_drive(drive, 255); return -1; } static int cmd648_ide_dma_end (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); int err = __ide_dma_end(drive); u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 : MRDMODE_INTR_CH0; u8 mrdmode = inb(hwif->dma_master + 0x01); /* clear the interrupt bit */ outb(mrdmode | irq_mask, hwif->dma_master + 0x01); return err; } static int cmd64x_ide_dma_end (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = hwif->pci_dev; int irq_reg = hwif->channel ? ARTTIM23 : CFR; u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 : CFR_INTR_CH0; u8 irq_stat = 0; int err = __ide_dma_end(drive); (void) pci_read_config_byte(dev, irq_reg, &irq_stat); /* clear the interrupt bit */ (void) pci_write_config_byte(dev, irq_reg, irq_stat | irq_mask); return err; } static int cmd648_ide_dma_test_irq (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 : MRDMODE_INTR_CH0; u8 dma_stat = inb(hwif->dma_status); u8 mrdmode = inb(hwif->dma_master + 0x01); #ifdef DEBUG printk("%s: dma_stat: 0x%02x mrdmode: 0x%02x irq_mask: 0x%02x\n", drive->name, dma_stat, mrdmode, irq_mask); #endif if (!(mrdmode & irq_mask)) return 0; /* return 1 if INTR asserted */ if (dma_stat & 4) return 1; return 0; } static int cmd64x_ide_dma_test_irq (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = hwif->pci_dev; int irq_reg = hwif->channel ? ARTTIM23 : CFR; u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 : CFR_INTR_CH0; u8 dma_stat = inb(hwif->dma_status); u8 irq_stat = 0; (void) pci_read_config_byte(dev, irq_reg, &irq_stat); #ifdef DEBUG printk("%s: dma_stat: 0x%02x irq_stat: 0x%02x irq_mask: 0x%02x\n", drive->name, dma_stat, irq_stat, irq_mask); #endif if (!(irq_stat & irq_mask)) return 0; /* return 1 if INTR asserted */ if (dma_stat & 4) return 1; return 0; } /* * ASUS P55T2P4D with CMD646 chipset revision 0x01 requires the old * event order for DMA transfers. */ static int cmd646_1_ide_dma_end (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = 0, dma_cmd = 0; drive->waiting_for_dma = 0; /* get DMA status */ dma_stat = inb(hwif->dma_status); /* read DMA command state */ dma_cmd = inb(hwif->dma_command); /* stop DMA */ outb(dma_cmd & ~1, hwif->dma_command); /* clear the INTR & ERROR bits */ outb(dma_stat | 6, hwif->dma_status); /* and free any DMA resources */ ide_destroy_dmatable(drive); /* verify good DMA status */ return (dma_stat & 7) != 4; } static unsigned int __devinit init_chipset_cmd64x(struct pci_dev *dev, const char *name) { u8 mrdmode = 0; if (dev->device == PCI_DEVICE_ID_CMD_646) { u8 rev = 0; pci_read_config_byte(dev, PCI_REVISION_ID, &rev); switch (rev) { case 0x07: case 0x05: printk("%s: UltraDMA capable", name); break; case 0x03: default: printk("%s: MultiWord DMA force limited", name); break; case 0x01: printk("%s: MultiWord DMA limited, " "IRQ workaround enabled\n", name); break; } } /* Set a good latency timer and cache line size value. */ (void) pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); /* FIXME: pci_set_master() to ensure a good latency timer value */ /* * Enable interrupts, select MEMORY READ LINE for reads. * * NOTE: although not mentioned in the PCI0646U specs, * bits 0-1 are write only and won't be read back as * set or not -- PCI0646U2 specs clarify this point. */ (void) pci_read_config_byte (dev, MRDMODE, &mrdmode); mrdmode &= ~0x30; (void) pci_write_config_byte(dev, MRDMODE, (mrdmode | 0x02)); #if defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_IDE_PROC_FS) cmd_devs[n_cmd_devs++] = dev; if (!cmd64x_proc) { cmd64x_proc = 1; ide_pci_create_host_proc("cmd64x", cmd64x_get_info); } #endif /* DISPLAY_CMD64X_TIMINGS && CONFIG_IDE_PROC_FS */ return 0; } static u8 __devinit ata66_cmd64x(ide_hwif_t *hwif) { struct pci_dev *dev = hwif->pci_dev; u8 bmidecsr = 0, mask = hwif->channel ? 0x02 : 0x01; switch (dev->device) { case PCI_DEVICE_ID_CMD_648: case PCI_DEVICE_ID_CMD_649: pci_read_config_byte(dev, BMIDECSR, &bmidecsr); return (bmidecsr & mask) ? ATA_CBL_PATA80 : ATA_CBL_PATA40; default: return ATA_CBL_PATA40; } } static void __devinit init_hwif_cmd64x(ide_hwif_t *hwif) { struct pci_dev *dev = hwif->pci_dev; u8 rev = 0; pci_read_config_byte(dev, PCI_REVISION_ID, &rev); hwif->tuneproc = &cmd64x_tune_drive; hwif->speedproc = &cmd64x_tune_chipset; hwif->drives[0].autotune = hwif->drives[1].autotune = 1; if (!hwif->dma_base) return; hwif->atapi_dma = 1; hwif->mwdma_mask = 0x07; hwif->ultra_mask = hwif->cds->udma_mask; /* * UltraDMA only supported on PCI646U and PCI646U2, which * correspond to revisions 0x03, 0x05 and 0x07 respectively. * Actually, although the CMD tech support people won't * tell me the details, the 0x03 revision cannot support * UDMA correctly without hardware modifications, and even * then it only works with Quantum disks due to some * hold time assumptions in the 646U part which are fixed * in the 646U2. * * So we only do UltraDMA on revision 0x05 and 0x07 chipsets. */ if (dev->device == PCI_DEVICE_ID_CMD_646 && rev < 5) hwif->ultra_mask = 0x00; hwif->ide_dma_check = &cmd64x_config_drive_for_dma; if (hwif->cbl != ATA_CBL_PATA40_SHORT) hwif->cbl = ata66_cmd64x(hwif); switch (dev->device) { case PCI_DEVICE_ID_CMD_648: case PCI_DEVICE_ID_CMD_649: alt_irq_bits: hwif->ide_dma_end = &cmd648_ide_dma_end; hwif->ide_dma_test_irq = &cmd648_ide_dma_test_irq; break; case PCI_DEVICE_ID_CMD_646: hwif->chipset = ide_cmd646; if (rev == 0x01) { hwif->ide_dma_end = &cmd646_1_ide_dma_end; break; } else if (rev >= 0x03) goto alt_irq_bits; /* fall thru */ default: hwif->ide_dma_end = &cmd64x_ide_dma_end; hwif->ide_dma_test_irq = &cmd64x_ide_dma_test_irq; break; } if (!noautodma) hwif->autodma = 1; hwif->drives[0].autodma = hwif->drives[1].autodma = hwif->autodma; } static int __devinit init_setup_cmd64x(struct pci_dev *dev, ide_pci_device_t *d) { return ide_setup_pci_device(dev, d); } static int __devinit init_setup_cmd646(struct pci_dev *dev, ide_pci_device_t *d) { u8 rev = 0; /* * The original PCI0646 didn't have the primary channel enable bit, * it appeared starting with PCI0646U (i.e. revision ID 3). */ pci_read_config_byte(dev, PCI_REVISION_ID, &rev); if (rev < 3) d->enablebits[0].reg = 0; return ide_setup_pci_device(dev, d); } static ide_pci_device_t cmd64x_chipsets[] __devinitdata = { { /* 0 */ .name = "CMD643", .init_setup = init_setup_cmd64x, .init_chipset = init_chipset_cmd64x, .init_hwif = init_hwif_cmd64x, .channels = 2, .autodma = AUTODMA, .enablebits = {{0x00,0x00,0x00}, {0x51,0x08,0x08}}, .bootable = ON_BOARD, .udma_mask = 0x00, /* no udma */ },{ /* 1 */ .name = "CMD646", .init_setup = init_setup_cmd646, .init_chipset = init_chipset_cmd64x, .init_hwif = init_hwif_cmd64x, .channels = 2, .autodma = AUTODMA, .enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}}, .bootable = ON_BOARD, .udma_mask = 0x07, /* udma0-2 */ },{ /* 2 */ .name = "CMD648", .init_setup = init_setup_cmd64x, .init_chipset = init_chipset_cmd64x, .init_hwif = init_hwif_cmd64x, .channels = 2, .autodma = AUTODMA, .enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}}, .bootable = ON_BOARD, .udma_mask = 0x1f, /* udma0-4 */ },{ /* 3 */ .name = "CMD649", .init_setup = init_setup_cmd64x, .init_chipset = init_chipset_cmd64x, .init_hwif = init_hwif_cmd64x, .channels = 2, .autodma = AUTODMA, .enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}}, .bootable = ON_BOARD, .udma_mask = 0x3f, /* udma0-5 */ } }; /* * We may have to modify enablebits for PCI0646, so we'd better pass * a local copy of the ide_pci_device_t structure down the call chain... */ static int __devinit cmd64x_init_one(struct pci_dev *dev, const struct pci_device_id *id) { ide_pci_device_t d = cmd64x_chipsets[id->driver_data]; return d.init_setup(dev, &d); } static struct pci_device_id cmd64x_pci_tbl[] = { { PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_643, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, { PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1}, { PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_648, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2}, { PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_649, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3}, { 0, }, }; MODULE_DEVICE_TABLE(pci, cmd64x_pci_tbl); static struct pci_driver driver = { .name = "CMD64x_IDE", .id_table = cmd64x_pci_tbl, .probe = cmd64x_init_one, }; static int __init cmd64x_ide_init(void) { return ide_pci_register_driver(&driver); } module_init(cmd64x_ide_init); MODULE_AUTHOR("Eddie Dost, David Miller, Andre Hedrick"); MODULE_DESCRIPTION("PCI driver module for CMD64x IDE"); MODULE_LICENSE("GPL");