/* * lm83.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2003-2006 Jean Delvare * * Heavily inspired from the lm78, lm75 and adm1021 drivers. The LM83 is * a sensor chip made by National Semiconductor. It reports up to four * temperatures (its own plus up to three external ones) with a 1 deg * resolution and a 3-4 deg accuracy. Complete datasheet can be obtained * from National's website at: * http://www.national.com/pf/LM/LM83.html * Since the datasheet omits to give the chip stepping code, I give it * here: 0x03 (at register 0xff). * * Also supports the LM82 temp sensor, which is basically a stripped down * model of the LM83. Datasheet is here: * http://www.national.com/pf/LM/LM82.html * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include /* * Addresses to scan * Address is selected using 2 three-level pins, resulting in 9 possible * addresses. */ static unsigned short normal_i2c[] = { 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END }; /* * Insmod parameters */ I2C_CLIENT_INSMOD_2(lm83, lm82); /* * The LM83 registers * Manufacturer ID is 0x01 for National Semiconductor. */ #define LM83_REG_R_MAN_ID 0xFE #define LM83_REG_R_CHIP_ID 0xFF #define LM83_REG_R_CONFIG 0x03 #define LM83_REG_W_CONFIG 0x09 #define LM83_REG_R_STATUS1 0x02 #define LM83_REG_R_STATUS2 0x35 #define LM83_REG_R_LOCAL_TEMP 0x00 #define LM83_REG_R_LOCAL_HIGH 0x05 #define LM83_REG_W_LOCAL_HIGH 0x0B #define LM83_REG_R_REMOTE1_TEMP 0x30 #define LM83_REG_R_REMOTE1_HIGH 0x38 #define LM83_REG_W_REMOTE1_HIGH 0x50 #define LM83_REG_R_REMOTE2_TEMP 0x01 #define LM83_REG_R_REMOTE2_HIGH 0x07 #define LM83_REG_W_REMOTE2_HIGH 0x0D #define LM83_REG_R_REMOTE3_TEMP 0x31 #define LM83_REG_R_REMOTE3_HIGH 0x3A #define LM83_REG_W_REMOTE3_HIGH 0x52 #define LM83_REG_R_TCRIT 0x42 #define LM83_REG_W_TCRIT 0x5A /* * Conversions and various macros * The LM83 uses signed 8-bit values with LSB = 1 degree Celsius. */ #define TEMP_FROM_REG(val) ((val) * 1000) #define TEMP_TO_REG(val) ((val) <= -128000 ? -128 : \ (val) >= 127000 ? 127 : \ (val) < 0 ? ((val) - 500) / 1000 : \ ((val) + 500) / 1000) static const u8 LM83_REG_R_TEMP[] = { LM83_REG_R_LOCAL_TEMP, LM83_REG_R_REMOTE1_TEMP, LM83_REG_R_REMOTE2_TEMP, LM83_REG_R_REMOTE3_TEMP, LM83_REG_R_LOCAL_HIGH, LM83_REG_R_REMOTE1_HIGH, LM83_REG_R_REMOTE2_HIGH, LM83_REG_R_REMOTE3_HIGH, LM83_REG_R_TCRIT, }; static const u8 LM83_REG_W_HIGH[] = { LM83_REG_W_LOCAL_HIGH, LM83_REG_W_REMOTE1_HIGH, LM83_REG_W_REMOTE2_HIGH, LM83_REG_W_REMOTE3_HIGH, LM83_REG_W_TCRIT, }; /* * Functions declaration */ static int lm83_attach_adapter(struct i2c_adapter *adapter); static int lm83_detect(struct i2c_adapter *adapter, int address, int kind); static int lm83_detach_client(struct i2c_client *client); static struct lm83_data *lm83_update_device(struct device *dev); /* * Driver data (common to all clients) */ static struct i2c_driver lm83_driver = { .driver = { .name = "lm83", }, .id = I2C_DRIVERID_LM83, .attach_adapter = lm83_attach_adapter, .detach_client = lm83_detach_client, }; /* * Client data (each client gets its own) */ struct lm83_data { struct i2c_client client; struct class_device *class_dev; struct mutex update_lock; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ /* registers values */ s8 temp[9]; /* 0..3: input 1-4, 4..7: high limit 1-4, 8 : critical limit */ u16 alarms; /* bitvector, combined */ }; /* * Sysfs stuff */ static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm83_data *data = lm83_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index])); } static ssize_t set_temp(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct lm83_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); int nr = attr->index; mutex_lock(&data->update_lock); data->temp[nr] = TEMP_TO_REG(val); i2c_smbus_write_byte_data(client, LM83_REG_W_HIGH[nr - 4], data->temp[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy, char *buf) { struct lm83_data *data = lm83_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static ssize_t show_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm83_data *data = lm83_update_device(dev); int bitnr = attr->index; return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2); static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp, set_temp, 4); static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp, set_temp, 5); static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_temp, set_temp, 6); static SENSOR_DEVICE_ATTR(temp4_max, S_IWUSR | S_IRUGO, show_temp, set_temp, 7); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, show_temp, NULL, 8); static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, show_temp, NULL, 8); static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp, set_temp, 8); static SENSOR_DEVICE_ATTR(temp4_crit, S_IRUGO, show_temp, NULL, 8); /* Individual alarm files */ static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_input_fault, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(temp4_crit_alarm, S_IRUGO, show_alarm, NULL, 9); static SENSOR_DEVICE_ATTR(temp4_input_fault, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_alarm, NULL, 12); static SENSOR_DEVICE_ATTR(temp2_input_fault, S_IRUGO, show_alarm, NULL, 13); static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 15); /* Raw alarm file for compatibility */ static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static struct attribute *lm83_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_input_fault.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &dev_attr_alarms.attr, NULL }; static const struct attribute_group lm83_group = { .attrs = lm83_attributes, }; static struct attribute *lm83_attributes_opt[] = { &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp4_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp4_input_fault.dev_attr.attr, &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_input_fault.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm83_group_opt = { .attrs = lm83_attributes_opt, }; /* * Real code */ static int lm83_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_probe(adapter, &addr_data, lm83_detect); } /* * The following function does more than just detection. If detection * succeeds, it also registers the new chip. */ static int lm83_detect(struct i2c_adapter *adapter, int address, int kind) { struct i2c_client *new_client; struct lm83_data *data; int err = 0; const char *name = ""; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) goto exit; if (!(data = kzalloc(sizeof(struct lm83_data), GFP_KERNEL))) { err = -ENOMEM; goto exit; } /* The common I2C client data is placed right after the * LM83-specific data. */ new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &lm83_driver; new_client->flags = 0; /* Now we do the detection and identification. A negative kind * means that the driver was loaded with no force parameter * (default), so we must both detect and identify the chip * (actually there is only one possible kind of chip for now, LM83). * A zero kind means that the driver was loaded with the force * parameter, the detection step shall be skipped. A positive kind * means that the driver was loaded with the force parameter and a * given kind of chip is requested, so both the detection and the * identification steps are skipped. */ /* Default to an LM83 if forced */ if (kind == 0) kind = lm83; if (kind < 0) { /* detection */ if (((i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS1) & 0xA8) != 0x00) || ((i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS2) & 0x48) != 0x00) || ((i2c_smbus_read_byte_data(new_client, LM83_REG_R_CONFIG) & 0x41) != 0x00)) { dev_dbg(&adapter->dev, "LM83 detection failed at 0x%02x.\n", address); goto exit_free; } } if (kind <= 0) { /* identification */ u8 man_id, chip_id; man_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_MAN_ID); chip_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_CHIP_ID); if (man_id == 0x01) { /* National Semiconductor */ if (chip_id == 0x03) { kind = lm83; } else if (chip_id == 0x01) { kind = lm82; } } if (kind <= 0) { /* identification failed */ dev_info(&adapter->dev, "Unsupported chip (man_id=0x%02X, " "chip_id=0x%02X).\n", man_id, chip_id); goto exit_free; } } if (kind == lm83) { name = "lm83"; } else if (kind == lm82) { name = "lm82"; } /* We can fill in the remaining client fields */ strlcpy(new_client->name, name, I2C_NAME_SIZE); data->valid = 0; mutex_init(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(new_client))) goto exit_free; /* * Register sysfs hooks * The LM82 can only monitor one external diode which is * at the same register as the LM83 temp3 entry - so we * declare 1 and 3 common, and then 2 and 4 only for the LM83. */ if ((err = sysfs_create_group(&new_client->dev.kobj, &lm83_group))) goto exit_detach; if (kind == lm83) { if ((err = sysfs_create_group(&new_client->dev.kobj, &lm83_group_opt))) goto exit_remove_files; } data->class_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->class_dev)) { err = PTR_ERR(data->class_dev); goto exit_remove_files; } return 0; exit_remove_files: sysfs_remove_group(&new_client->dev.kobj, &lm83_group); sysfs_remove_group(&new_client->dev.kobj, &lm83_group_opt); exit_detach: i2c_detach_client(new_client); exit_free: kfree(data); exit: return err; } static int lm83_detach_client(struct i2c_client *client) { struct lm83_data *data = i2c_get_clientdata(client); int err; hwmon_device_unregister(data->class_dev); sysfs_remove_group(&client->dev.kobj, &lm83_group); sysfs_remove_group(&client->dev.kobj, &lm83_group_opt); if ((err = i2c_detach_client(client))) return err; kfree(data); return 0; } static struct lm83_data *lm83_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm83_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) { int nr; dev_dbg(&client->dev, "Updating lm83 data.\n"); for (nr = 0; nr < 9; nr++) { data->temp[nr] = i2c_smbus_read_byte_data(client, LM83_REG_R_TEMP[nr]); } data->alarms = i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS1) + (i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS2) << 8); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __init sensors_lm83_init(void) { return i2c_add_driver(&lm83_driver); } static void __exit sensors_lm83_exit(void) { i2c_del_driver(&lm83_driver); } MODULE_AUTHOR("Jean Delvare "); MODULE_DESCRIPTION("LM83 driver"); MODULE_LICENSE("GPL"); module_init(sensors_lm83_init); module_exit(sensors_lm83_exit);