/* * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Licensed under the GPL */ #include "linux/irqreturn.h" #include "linux/kd.h" #include "chan_kern.h" #include "irq_kern.h" #include "irq_user.h" #include "kern_util.h" #include "os.h" #define LINE_BUFSIZE 4096 static irqreturn_t line_interrupt(int irq, void *data) { struct chan *chan = data; struct line *line = chan->line; struct tty_struct *tty = line->tty; if (line) chan_interrupt(&line->chan_list, &line->task, tty, irq); return IRQ_HANDLED; } static void line_timer_cb(struct work_struct *work) { struct line *line = container_of(work, struct line, task.work); if (!line->throttled) chan_interrupt(&line->chan_list, &line->task, line->tty, line->driver->read_irq); } /* * Returns the free space inside the ring buffer of this line. * * Should be called while holding line->lock (this does not modify data). */ static int write_room(struct line *line) { int n; if (line->buffer == NULL) return LINE_BUFSIZE - 1; /* This is for the case where the buffer is wrapped! */ n = line->head - line->tail; if (n <= 0) n += LINE_BUFSIZE; /* The other case */ return n - 1; } int line_write_room(struct tty_struct *tty) { struct line *line = tty->driver_data; unsigned long flags; int room; spin_lock_irqsave(&line->lock, flags); room = write_room(line); spin_unlock_irqrestore(&line->lock, flags); return room; } int line_chars_in_buffer(struct tty_struct *tty) { struct line *line = tty->driver_data; unsigned long flags; int ret; spin_lock_irqsave(&line->lock, flags); /* write_room subtracts 1 for the needed NULL, so we readd it.*/ ret = LINE_BUFSIZE - (write_room(line) + 1); spin_unlock_irqrestore(&line->lock, flags); return ret; } /* * This copies the content of buf into the circular buffer associated with * this line. * The return value is the number of characters actually copied, i.e. the ones * for which there was space: this function is not supposed to ever flush out * the circular buffer. * * Must be called while holding line->lock! */ static int buffer_data(struct line *line, const char *buf, int len) { int end, room; if (line->buffer == NULL) { line->buffer = kmalloc(LINE_BUFSIZE, GFP_ATOMIC); if (line->buffer == NULL) { printk(KERN_ERR "buffer_data - atomic allocation " "failed\n"); return 0; } line->head = line->buffer; line->tail = line->buffer; } room = write_room(line); len = (len > room) ? room : len; end = line->buffer + LINE_BUFSIZE - line->tail; if (len < end) { memcpy(line->tail, buf, len); line->tail += len; } else { /* The circular buffer is wrapping */ memcpy(line->tail, buf, end); buf += end; memcpy(line->buffer, buf, len - end); line->tail = line->buffer + len - end; } return len; } /* * Flushes the ring buffer to the output channels. That is, write_chan is * called, passing it line->head as buffer, and an appropriate count. * * On exit, returns 1 when the buffer is empty, * 0 when the buffer is not empty on exit, * and -errno when an error occurred. * * Must be called while holding line->lock!*/ static int flush_buffer(struct line *line) { int n, count; if ((line->buffer == NULL) || (line->head == line->tail)) return 1; if (line->tail < line->head) { /* line->buffer + LINE_BUFSIZE is the end of the buffer! */ count = line->buffer + LINE_BUFSIZE - line->head; n = write_chan(&line->chan_list, line->head, count, line->driver->write_irq); if (n < 0) return n; if (n == count) { /* * We have flushed from ->head to buffer end, now we * must flush only from the beginning to ->tail. */ line->head = line->buffer; } else { line->head += n; return 0; } } count = line->tail - line->head; n = write_chan(&line->chan_list, line->head, count, line->driver->write_irq); if (n < 0) return n; line->head += n; return line->head == line->tail; } void line_flush_buffer(struct tty_struct *tty) { struct line *line = tty->driver_data; unsigned long flags; int err; spin_lock_irqsave(&line->lock, flags); err = flush_buffer(line); spin_unlock_irqrestore(&line->lock, flags); } /* * We map both ->flush_chars and ->put_char (which go in pair) onto * ->flush_buffer and ->write. Hope it's not that bad. */ void line_flush_chars(struct tty_struct *tty) { line_flush_buffer(tty); } int line_put_char(struct tty_struct *tty, unsigned char ch) { return line_write(tty, &ch, sizeof(ch)); } int line_write(struct tty_struct *tty, const unsigned char *buf, int len) { struct line *line = tty->driver_data; unsigned long flags; int n, ret = 0; spin_lock_irqsave(&line->lock, flags); if (line->head != line->tail) ret = buffer_data(line, buf, len); else { n = write_chan(&line->chan_list, buf, len, line->driver->write_irq); if (n < 0) { ret = n; goto out_up; } len -= n; ret += n; if (len > 0) ret += buffer_data(line, buf + n, len); } out_up: spin_unlock_irqrestore(&line->lock, flags); return ret; } void line_set_termios(struct tty_struct *tty, struct ktermios * old) { /* nothing */ } static const struct { int cmd; char *level; char *name; } tty_ioctls[] = { /* don't print these, they flood the log ... */ { TCGETS, NULL, "TCGETS" }, { TCSETS, NULL, "TCSETS" }, { TCSETSW, NULL, "TCSETSW" }, { TCFLSH, NULL, "TCFLSH" }, { TCSBRK, NULL, "TCSBRK" }, /* general tty stuff */ { TCSETSF, KERN_DEBUG, "TCSETSF" }, { TCGETA, KERN_DEBUG, "TCGETA" }, { TIOCMGET, KERN_DEBUG, "TIOCMGET" }, { TCSBRKP, KERN_DEBUG, "TCSBRKP" }, { TIOCMSET, KERN_DEBUG, "TIOCMSET" }, /* linux-specific ones */ { TIOCLINUX, KERN_INFO, "TIOCLINUX" }, { KDGKBMODE, KERN_INFO, "KDGKBMODE" }, { KDGKBTYPE, KERN_INFO, "KDGKBTYPE" }, { KDSIGACCEPT, KERN_INFO, "KDSIGACCEPT" }, }; int line_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int ret; int i; ret = 0; switch(cmd) { #ifdef TIOCGETP case TIOCGETP: case TIOCSETP: case TIOCSETN: #endif #ifdef TIOCGETC case TIOCGETC: case TIOCSETC: #endif #ifdef TIOCGLTC case TIOCGLTC: case TIOCSLTC: #endif /* Note: these are out of date as we now have TCGETS2 etc but this whole lot should probably go away */ case TCGETS: case TCSETSF: case TCSETSW: case TCSETS: case TCGETA: case TCSETAF: case TCSETAW: case TCSETA: case TCXONC: case TCFLSH: case TIOCOUTQ: case TIOCINQ: case TIOCGLCKTRMIOS: case TIOCSLCKTRMIOS: case TIOCPKT: case TIOCGSOFTCAR: case TIOCSSOFTCAR: return -ENOIOCTLCMD; #if 0 case TCwhatever: /* do something */ break; #endif default: for (i = 0; i < ARRAY_SIZE(tty_ioctls); i++) if (cmd == tty_ioctls[i].cmd) break; if (i == ARRAY_SIZE(tty_ioctls)) { printk(KERN_ERR "%s: %s: unknown ioctl: 0x%x\n", __func__, tty->name, cmd); } ret = -ENOIOCTLCMD; break; } return ret; } void line_throttle(struct tty_struct *tty) { struct line *line = tty->driver_data; deactivate_chan(&line->chan_list, line->driver->read_irq); line->throttled = 1; } void line_unthrottle(struct tty_struct *tty) { struct line *line = tty->driver_data; line->throttled = 0; chan_interrupt(&line->chan_list, &line->task, tty, line->driver->read_irq); /* * Maybe there is enough stuff pending that calling the interrupt * throttles us again. In this case, line->throttled will be 1 * again and we shouldn't turn the interrupt back on. */ if (!line->throttled) reactivate_chan(&line->chan_list, line->driver->read_irq); } static irqreturn_t line_write_interrupt(int irq, void *data) { struct chan *chan = data; struct line *line = chan->line; struct tty_struct *tty = line->tty; int err; /* * Interrupts are disabled here because we registered the interrupt with * IRQF_DISABLED (see line_setup_irq). */ spin_lock(&line->lock); err = flush_buffer(line); if (err == 0) { return IRQ_NONE; } else if (err < 0) { line->head = line->buffer; line->tail = line->buffer; } spin_unlock(&line->lock); if (tty == NULL) return IRQ_NONE; tty_wakeup(tty); return IRQ_HANDLED; } int line_setup_irq(int fd, int input, int output, struct line *line, void *data) { const struct line_driver *driver = line->driver; int err = 0, flags = IRQF_DISABLED | IRQF_SHARED | IRQF_SAMPLE_RANDOM; if (input) err = um_request_irq(driver->read_irq, fd, IRQ_READ, line_interrupt, flags, driver->read_irq_name, data); if (err) return err; if (output) err = um_request_irq(driver->write_irq, fd, IRQ_WRITE, line_write_interrupt, flags, driver->write_irq_name, data); line->have_irq = 1; return err; } /* * Normally, a driver like this can rely mostly on the tty layer * locking, particularly when it comes to the driver structure. * However, in this case, mconsole requests can come in "from the * side", and race with opens and closes. * * mconsole config requests will want to be sure the device isn't in * use, and get_config, open, and close will want a stable * configuration. The checking and modification of the configuration * is done under a spinlock. Checking whether the device is in use is * line->tty->count > 1, also under the spinlock. * * tty->count serves to decide whether the device should be enabled or * disabled on the host. If it's equal to 1, then we are doing the * first open or last close. Otherwise, open and close just return. */ int line_open(struct line *lines, struct tty_struct *tty) { struct line *line = &lines[tty->index]; int err = -ENODEV; spin_lock(&line->count_lock); if (!line->valid) goto out_unlock; err = 0; if (tty->count > 1) goto out_unlock; spin_unlock(&line->count_lock); tty->driver_data = line; line->tty = tty; err = enable_chan(line); if (err) return err; INIT_DELAYED_WORK(&line->task, line_timer_cb); if (!line->sigio) { chan_enable_winch(&line->chan_list, tty); line->sigio = 1; } chan_window_size(&line->chan_list, &tty->winsize.ws_row, &tty->winsize.ws_col); return err; out_unlock: spin_unlock(&line->count_lock); return err; } static void unregister_winch(struct tty_struct *tty); void line_close(struct tty_struct *tty, struct file * filp) { struct line *line = tty->driver_data; /* * If line_open fails (and tty->driver_data is never set), * tty_open will call line_close. So just return in this case. */ if (line == NULL) return; /* We ignore the error anyway! */ flush_buffer(line); spin_lock(&line->count_lock); if (!line->valid) goto out_unlock; if (tty->count > 1) goto out_unlock; spin_unlock(&line->count_lock); line->tty = NULL; tty->driver_data = NULL; if (line->sigio) { unregister_winch(tty); line->sigio = 0; } return; out_unlock: spin_unlock(&line->count_lock); } void close_lines(struct line *lines, int nlines) { int i; for(i = 0; i < nlines; i++) close_chan(&lines[i].chan_list, 0); } static int setup_one_line(struct line *lines, int n, char *init, int init_prio, char **error_out) { struct line *line = &lines[n]; int err = -EINVAL; spin_lock(&line->count_lock); if (line->tty != NULL) { *error_out = "Device is already open"; goto out; } if (line->init_pri <= init_prio) { line->init_pri = init_prio; if (!strcmp(init, "none")) line->valid = 0; else { line->init_str = init; line->valid = 1; } } err = 0; out: spin_unlock(&line->count_lock); return err; } /* * Common setup code for both startup command line and mconsole initialization. * @lines contains the array (of size @num) to modify; * @init is the setup string; * @error_out is an error string in the case of failure; */ int line_setup(struct line *lines, unsigned int num, char *init, char **error_out) { int i, n, err; char *end; if (*init == '=') { /* * We said con=/ssl= instead of con#=, so we are configuring all * consoles at once. */ n = -1; } else { n = simple_strtoul(init, &end, 0); if (*end != '=') { *error_out = "Couldn't parse device number"; return -EINVAL; } init = end; } init++; if (n >= (signed int) num) { *error_out = "Device number out of range"; return -EINVAL; } else if (n >= 0) { err = setup_one_line(lines, n, init, INIT_ONE, error_out); if (err) return err; } else { for(i = 0; i < num; i++) { err = setup_one_line(lines, i, init, INIT_ALL, error_out); if (err) return err; } } return n == -1 ? num : n; } int line_config(struct line *lines, unsigned int num, char *str, const struct chan_opts *opts, char **error_out) { struct line *line; char *new; int n; if (*str == '=') { *error_out = "Can't configure all devices from mconsole"; return -EINVAL; } new = kstrdup(str, GFP_KERNEL); if (new == NULL) { *error_out = "Failed to allocate memory"; return -ENOMEM; } n = line_setup(lines, num, new, error_out); if (n < 0) return n; line = &lines[n]; return parse_chan_pair(line->init_str, line, n, opts, error_out); } int line_get_config(char *name, struct line *lines, unsigned int num, char *str, int size, char **error_out) { struct line *line; char *end; int dev, n = 0; dev = simple_strtoul(name, &end, 0); if ((*end != '\0') || (end == name)) { *error_out = "line_get_config failed to parse device number"; return 0; } if ((dev < 0) || (dev >= num)) { *error_out = "device number out of range"; return 0; } line = &lines[dev]; spin_lock(&line->count_lock); if (!line->valid) CONFIG_CHUNK(str, size, n, "none", 1); else if (line->tty == NULL) CONFIG_CHUNK(str, size, n, line->init_str, 1); else n = chan_config_string(&line->chan_list, str, size, error_out); spin_unlock(&line->count_lock); return n; } int line_id(char **str, int *start_out, int *end_out) { char *end; int n; n = simple_strtoul(*str, &end, 0); if ((*end != '\0') || (end == *str)) return -1; *str = end; *start_out = n; *end_out = n; return n; } int line_remove(struct line *lines, unsigned int num, int n, char **error_out) { int err; char config[sizeof("conxxxx=none\0")]; sprintf(config, "%d=none", n); err = line_setup(lines, num, config, error_out); if (err >= 0) err = 0; return err; } struct tty_driver *register_lines(struct line_driver *line_driver, const struct tty_operations *ops, struct line *lines, int nlines) { int i; struct tty_driver *driver = alloc_tty_driver(nlines); if (!driver) return NULL; driver->driver_name = line_driver->name; driver->name = line_driver->device_name; driver->major = line_driver->major; driver->minor_start = line_driver->minor_start; driver->type = line_driver->type; driver->subtype = line_driver->subtype; driver->flags = TTY_DRIVER_REAL_RAW; driver->init_termios = tty_std_termios; tty_set_operations(driver, ops); if (tty_register_driver(driver)) { printk(KERN_ERR "register_lines : can't register %s driver\n", line_driver->name); put_tty_driver(driver); return NULL; } for(i = 0; i < nlines; i++) { if (!lines[i].valid) tty_unregister_device(driver, i); } mconsole_register_dev(&line_driver->mc); return driver; } static DEFINE_SPINLOCK(winch_handler_lock); static LIST_HEAD(winch_handlers); void lines_init(struct line *lines, int nlines, struct chan_opts *opts) { struct line *line; char *error; int i; for(i = 0; i < nlines; i++) { line = &lines[i]; INIT_LIST_HEAD(&line->chan_list); if (line->init_str == NULL) continue; line->init_str = kstrdup(line->init_str, GFP_KERNEL); if (line->init_str == NULL) printk(KERN_ERR "lines_init - kstrdup returned NULL\n"); if (parse_chan_pair(line->init_str, line, i, opts, &error)) { printk(KERN_ERR "parse_chan_pair failed for " "device %d : %s\n", i, error); line->valid = 0; } } } struct winch { struct list_head list; int fd; int tty_fd; int pid; struct tty_struct *tty; unsigned long stack; }; static void free_winch(struct winch *winch, int free_irq_ok) { list_del(&winch->list); if (winch->pid != -1) os_kill_process(winch->pid, 1); if (winch->fd != -1) os_close_file(winch->fd); if (winch->stack != 0) free_stack(winch->stack, 0); if (free_irq_ok) free_irq(WINCH_IRQ, winch); kfree(winch); } static irqreturn_t winch_interrupt(int irq, void *data) { struct winch *winch = data; struct tty_struct *tty; struct line *line; int err; char c; if (winch->fd != -1) { err = generic_read(winch->fd, &c, NULL); if (err < 0) { if (err != -EAGAIN) { printk(KERN_ERR "winch_interrupt : " "read failed, errno = %d\n", -err); printk(KERN_ERR "fd %d is losing SIGWINCH " "support\n", winch->tty_fd); free_winch(winch, 0); return IRQ_HANDLED; } goto out; } } tty = winch->tty; if (tty != NULL) { line = tty->driver_data; if (line != NULL) { chan_window_size(&line->chan_list, &tty->winsize.ws_row, &tty->winsize.ws_col); kill_pgrp(tty->pgrp, SIGWINCH, 1); } } out: if (winch->fd != -1) reactivate_fd(winch->fd, WINCH_IRQ); return IRQ_HANDLED; } void register_winch_irq(int fd, int tty_fd, int pid, struct tty_struct *tty, unsigned long stack) { struct winch *winch; winch = kmalloc(sizeof(*winch), GFP_KERNEL); if (winch == NULL) { printk(KERN_ERR "register_winch_irq - kmalloc failed\n"); goto cleanup; } *winch = ((struct winch) { .list = LIST_HEAD_INIT(winch->list), .fd = fd, .tty_fd = tty_fd, .pid = pid, .tty = tty, .stack = stack }); if (um_request_irq(WINCH_IRQ, fd, IRQ_READ, winch_interrupt, IRQF_DISABLED | IRQF_SHARED | IRQF_SAMPLE_RANDOM, "winch", winch) < 0) { printk(KERN_ERR "register_winch_irq - failed to register " "IRQ\n"); goto out_free; } spin_lock(&winch_handler_lock); list_add(&winch->list, &winch_handlers); spin_unlock(&winch_handler_lock); return; out_free: kfree(winch); cleanup: os_kill_process(pid, 1); os_close_file(fd); if (stack != 0) free_stack(stack, 0); } static void unregister_winch(struct tty_struct *tty) { struct list_head *ele; struct winch *winch; spin_lock(&winch_handler_lock); list_for_each(ele, &winch_handlers) { winch = list_entry(ele, struct winch, list); if (winch->tty == tty) { free_winch(winch, 1); break; } } spin_unlock(&winch_handler_lock); } static void winch_cleanup(void) { struct list_head *ele, *next; struct winch *winch; spin_lock(&winch_handler_lock); list_for_each_safe(ele, next, &winch_handlers) { winch = list_entry(ele, struct winch, list); free_winch(winch, 1); } spin_unlock(&winch_handler_lock); } __uml_exitcall(winch_cleanup); char *add_xterm_umid(char *base) { char *umid, *title; int len; umid = get_umid(); if (*umid == '\0') return base; len = strlen(base) + strlen(" ()") + strlen(umid) + 1; title = kmalloc(len, GFP_KERNEL); if (title == NULL) { printk(KERN_ERR "Failed to allocate buffer for xterm title\n"); return base; } snprintf(title, len, "%s (%s)", base, umid); return title; }