/* * arch/powerpc/platforms/powermac/low_i2c.c * * Copyright (C) 2003-2005 Ben. Herrenschmidt (benh@kernel.crashing.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * The linux i2c layer isn't completely suitable for our needs for various * reasons ranging from too late initialisation to semantics not perfectly * matching some requirements of the apple platform functions etc... * * This file thus provides a simple low level unified i2c interface for * powermac that covers the various types of i2c busses used in Apple machines. * For now, keywest, PMU and SMU, though we could add Cuda, or other bit * banging busses found on older chipstes in earlier machines if we ever need * one of them. * * The drivers in this file are synchronous/blocking. In addition, the * keywest one is fairly slow due to the use of msleep instead of interrupts * as the interrupt is currently used by i2c-keywest. In the long run, we * might want to get rid of those high-level interfaces to linux i2c layer * either completely (converting all drivers) or replacing them all with a * single stub driver on top of this one. Once done, the interrupt will be * available for our use. */ #undef DEBUG #undef DEBUG_LOW #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define DBG(x...) do {\ printk(KERN_DEBUG "low_i2c:" x); \ } while(0) #else #define DBG(x...) #endif #ifdef DEBUG_LOW #define DBG_LOW(x...) do {\ printk(KERN_DEBUG "low_i2c:" x); \ } while(0) #else #define DBG_LOW(x...) #endif static int pmac_i2c_force_poll = 1; /* * A bus structure. Each bus in the system has such a structure associated. */ struct pmac_i2c_bus { struct list_head link; struct device_node *controller; struct device_node *busnode; int type; int flags; struct i2c_adapter *adapter; void *hostdata; int channel; /* some hosts have multiple */ int mode; /* current mode */ struct mutex mutex; int opened; int polled; /* open mode */ struct platform_device *platform_dev; /* ops */ int (*open)(struct pmac_i2c_bus *bus); void (*close)(struct pmac_i2c_bus *bus); int (*xfer)(struct pmac_i2c_bus *bus, u8 addrdir, int subsize, u32 subaddr, u8 *data, int len); }; static LIST_HEAD(pmac_i2c_busses); /* * Keywest implementation */ struct pmac_i2c_host_kw { struct mutex mutex; /* Access mutex for use by * i2c-keywest */ void __iomem *base; /* register base address */ int bsteps; /* register stepping */ int speed; /* speed */ int irq; u8 *data; unsigned len; int state; int rw; int polled; int result; struct completion complete; spinlock_t lock; struct timer_list timeout_timer; }; /* Register indices */ typedef enum { reg_mode = 0, reg_control, reg_status, reg_isr, reg_ier, reg_addr, reg_subaddr, reg_data } reg_t; /* The Tumbler audio equalizer can be really slow sometimes */ #define KW_POLL_TIMEOUT (2*HZ) /* Mode register */ #define KW_I2C_MODE_100KHZ 0x00 #define KW_I2C_MODE_50KHZ 0x01 #define KW_I2C_MODE_25KHZ 0x02 #define KW_I2C_MODE_DUMB 0x00 #define KW_I2C_MODE_STANDARD 0x04 #define KW_I2C_MODE_STANDARDSUB 0x08 #define KW_I2C_MODE_COMBINED 0x0C #define KW_I2C_MODE_MODE_MASK 0x0C #define KW_I2C_MODE_CHAN_MASK 0xF0 /* Control register */ #define KW_I2C_CTL_AAK 0x01 #define KW_I2C_CTL_XADDR 0x02 #define KW_I2C_CTL_STOP 0x04 #define KW_I2C_CTL_START 0x08 /* Status register */ #define KW_I2C_STAT_BUSY 0x01 #define KW_I2C_STAT_LAST_AAK 0x02 #define KW_I2C_STAT_LAST_RW 0x04 #define KW_I2C_STAT_SDA 0x08 #define KW_I2C_STAT_SCL 0x10 /* IER & ISR registers */ #define KW_I2C_IRQ_DATA 0x01 #define KW_I2C_IRQ_ADDR 0x02 #define KW_I2C_IRQ_STOP 0x04 #define KW_I2C_IRQ_START 0x08 #define KW_I2C_IRQ_MASK 0x0F /* State machine states */ enum { state_idle, state_addr, state_read, state_write, state_stop, state_dead }; #define WRONG_STATE(name) do {\ printk(KERN_DEBUG "KW: wrong state. Got %s, state: %s " \ "(isr: %02x)\n", \ name, __kw_state_names[host->state], isr); \ } while(0) static const char *__kw_state_names[] = { "state_idle", "state_addr", "state_read", "state_write", "state_stop", "state_dead" }; static inline u8 __kw_read_reg(struct pmac_i2c_host_kw *host, reg_t reg) { return readb(host->base + (((unsigned int)reg) << host->bsteps)); } static inline void __kw_write_reg(struct pmac_i2c_host_kw *host, reg_t reg, u8 val) { writeb(val, host->base + (((unsigned)reg) << host->bsteps)); (void)__kw_read_reg(host, reg_subaddr); } #define kw_write_reg(reg, val) __kw_write_reg(host, reg, val) #define kw_read_reg(reg) __kw_read_reg(host, reg) static u8 kw_i2c_wait_interrupt(struct pmac_i2c_host_kw *host) { int i, j; u8 isr; for (i = 0; i < 1000; i++) { isr = kw_read_reg(reg_isr) & KW_I2C_IRQ_MASK; if (isr != 0) return isr; /* This code is used with the timebase frozen, we cannot rely * on udelay nor schedule when in polled mode ! * For now, just use a bogus loop.... */ if (host->polled) { for (j = 1; j < 100000; j++) mb(); } else msleep(1); } return isr; } static void kw_i2c_do_stop(struct pmac_i2c_host_kw *host, int result) { kw_write_reg(reg_control, KW_I2C_CTL_STOP); host->state = state_stop; host->result = result; } static void kw_i2c_handle_interrupt(struct pmac_i2c_host_kw *host, u8 isr) { u8 ack; DBG_LOW("kw_handle_interrupt(%s, isr: %x)\n", __kw_state_names[host->state], isr); if (host->state == state_idle) { printk(KERN_WARNING "low_i2c: Keywest got an out of state" " interrupt, ignoring\n"); kw_write_reg(reg_isr, isr); return; } if (isr == 0) { printk(KERN_WARNING "low_i2c: Timeout in i2c transfer" " on keywest !\n"); if (host->state != state_stop) { kw_i2c_do_stop(host, -EIO); return; } ack = kw_read_reg(reg_status); if (ack & KW_I2C_STAT_BUSY) kw_write_reg(reg_status, 0); host->state = state_idle; kw_write_reg(reg_ier, 0x00); if (!host->polled) complete(&host->complete); return; } if (isr & KW_I2C_IRQ_ADDR) { ack = kw_read_reg(reg_status); if (host->state != state_addr) { WRONG_STATE("KW_I2C_IRQ_ADDR"); kw_i2c_do_stop(host, -EIO); } if ((ack & KW_I2C_STAT_LAST_AAK) == 0) { host->result = -ENXIO; host->state = state_stop; DBG_LOW("KW: NAK on address\n"); } else { if (host->len == 0) kw_i2c_do_stop(host, 0); else if (host->rw) { host->state = state_read; if (host->len > 1) kw_write_reg(reg_control, KW_I2C_CTL_AAK); } else { host->state = state_write; kw_write_reg(reg_data, *(host->data++)); host->len--; } } kw_write_reg(reg_isr, KW_I2C_IRQ_ADDR); } if (isr & KW_I2C_IRQ_DATA) { if (host->state == state_read) { *(host->data++) = kw_read_reg(reg_data); host->len--; kw_write_reg(reg_isr, KW_I2C_IRQ_DATA); if (host->len == 0) host->state = state_stop; else if (host->len == 1) kw_write_reg(reg_control, 0); } else if (host->state == state_write) { ack = kw_read_reg(reg_status); if ((ack & KW_I2C_STAT_LAST_AAK) == 0) { DBG_LOW("KW: nack on data write\n"); host->result = -EFBIG; host->state = state_stop; } else if (host->len) { kw_write_reg(reg_data, *(host->data++)); host->len--; } else kw_i2c_do_stop(host, 0); } else { WRONG_STATE("KW_I2C_IRQ_DATA"); if (host->state != state_stop) kw_i2c_do_stop(host, -EIO); } kw_write_reg(reg_isr, KW_I2C_IRQ_DATA); } if (isr & KW_I2C_IRQ_STOP) { kw_write_reg(reg_isr, KW_I2C_IRQ_STOP); if (host->state != state_stop) { WRONG_STATE("KW_I2C_IRQ_STOP"); host->result = -EIO; } host->state = state_idle; if (!host->polled) complete(&host->complete); } /* Below should only happen in manual mode which we don't use ... */ if (isr & KW_I2C_IRQ_START) kw_write_reg(reg_isr, KW_I2C_IRQ_START); } /* Interrupt handler */ static irqreturn_t kw_i2c_irq(int irq, void *dev_id) { struct pmac_i2c_host_kw *host = dev_id; unsigned long flags; spin_lock_irqsave(&host->lock, flags); del_timer(&host->timeout_timer); kw_i2c_handle_interrupt(host, kw_read_reg(reg_isr)); if (host->state != state_idle) { host->timeout_timer.expires = jiffies + KW_POLL_TIMEOUT; add_timer(&host->timeout_timer); } spin_unlock_irqrestore(&host->lock, flags); return IRQ_HANDLED; } static void kw_i2c_timeout(unsigned long data) { struct pmac_i2c_host_kw *host = (struct pmac_i2c_host_kw *)data; unsigned long flags; spin_lock_irqsave(&host->lock, flags); kw_i2c_handle_interrupt(host, kw_read_reg(reg_isr)); if (host->state != state_idle) { host->timeout_timer.expires = jiffies + KW_POLL_TIMEOUT; add_timer(&host->timeout_timer); } spin_unlock_irqrestore(&host->lock, flags); } static int kw_i2c_open(struct pmac_i2c_bus *bus) { struct pmac_i2c_host_kw *host = bus->hostdata; mutex_lock(&host->mutex); return 0; } static void kw_i2c_close(struct pmac_i2c_bus *bus) { struct pmac_i2c_host_kw *host = bus->hostdata; mutex_unlock(&host->mutex); } static int kw_i2c_xfer(struct pmac_i2c_bus *bus, u8 addrdir, int subsize, u32 subaddr, u8 *data, int len) { struct pmac_i2c_host_kw *host = bus->hostdata; u8 mode_reg = host->speed; int use_irq = host->irq != NO_IRQ && !bus->polled; /* Setup mode & subaddress if any */ switch(bus->mode) { case pmac_i2c_mode_dumb: return -EINVAL; case pmac_i2c_mode_std: mode_reg |= KW_I2C_MODE_STANDARD; if (subsize != 0) return -EINVAL; break; case pmac_i2c_mode_stdsub: mode_reg |= KW_I2C_MODE_STANDARDSUB; if (subsize != 1) return -EINVAL; break; case pmac_i2c_mode_combined: mode_reg |= KW_I2C_MODE_COMBINED; if (subsize != 1) return -EINVAL; break; } /* Setup channel & clear pending irqs */ kw_write_reg(reg_isr, kw_read_reg(reg_isr)); kw_write_reg(reg_mode, mode_reg | (bus->channel << 4)); kw_write_reg(reg_status, 0); /* Set up address and r/w bit, strip possible stale bus number from * address top bits */ kw_write_reg(reg_addr, addrdir & 0xff); /* Set up the sub address */ if ((mode_reg & KW_I2C_MODE_MODE_MASK) == KW_I2C_MODE_STANDARDSUB || (mode_reg & KW_I2C_MODE_MODE_MASK) == KW_I2C_MODE_COMBINED) kw_write_reg(reg_subaddr, subaddr); /* Prepare for async operations */ host->data = data; host->len = len; host->state = state_addr; host->result = 0; host->rw = (addrdir & 1); host->polled = bus->polled; /* Enable interrupt if not using polled mode and interrupt is * available */ if (use_irq) { /* Clear completion */ INIT_COMPLETION(host->complete); /* Ack stale interrupts */ kw_write_reg(reg_isr, kw_read_reg(reg_isr)); /* Arm timeout */ host->timeout_timer.expires = jiffies + KW_POLL_TIMEOUT; add_timer(&host->timeout_timer); /* Enable emission */ kw_write_reg(reg_ier, KW_I2C_IRQ_MASK); } /* Start sending address */ kw_write_reg(reg_control, KW_I2C_CTL_XADDR); /* Wait for completion */ if (use_irq) wait_for_completion(&host->complete); else { while(host->state != state_idle) { unsigned long flags; u8 isr = kw_i2c_wait_interrupt(host); spin_lock_irqsave(&host->lock, flags); kw_i2c_handle_interrupt(host, isr); spin_unlock_irqrestore(&host->lock, flags); } } /* Disable emission */ kw_write_reg(reg_ier, 0); return host->result; } static struct pmac_i2c_host_kw *__init kw_i2c_host_init(struct device_node *np) { struct pmac_i2c_host_kw *host; const u32 *psteps, *prate, *addrp; u32 steps; host = kzalloc(sizeof(struct pmac_i2c_host_kw), GFP_KERNEL); if (host == NULL) { printk(KERN_ERR "low_i2c: Can't allocate host for %s\n", np->full_name); return NULL; } /* Apple is kind enough to provide a valid AAPL,address property * on all i2c keywest nodes so far ... we would have to fallback * to macio parsing if that wasn't the case */ addrp = of_get_property(np, "AAPL,address", NULL); if (addrp == NULL) { printk(KERN_ERR "low_i2c: Can't find address for %s\n", np->full_name); kfree(host); return NULL; } mutex_init(&host->mutex); init_completion(&host->complete); spin_lock_init(&host->lock); init_timer(&host->timeout_timer); host->timeout_timer.function = kw_i2c_timeout; host->timeout_timer.data = (unsigned long)host; psteps = of_get_property(np, "AAPL,address-step", NULL); steps = psteps ? (*psteps) : 0x10; for (host->bsteps = 0; (steps & 0x01) == 0; host->bsteps++) steps >>= 1; /* Select interface rate */ host->speed = KW_I2C_MODE_25KHZ; prate = of_get_property(np, "AAPL,i2c-rate", NULL); if (prate) switch(*prate) { case 100: host->speed = KW_I2C_MODE_100KHZ; break; case 50: host->speed = KW_I2C_MODE_50KHZ; break; case 25: host->speed = KW_I2C_MODE_25KHZ; break; } host->irq = irq_of_parse_and_map(np, 0); if (host->irq == NO_IRQ) printk(KERN_WARNING "low_i2c: Failed to map interrupt for %s\n", np->full_name); host->base = ioremap((*addrp), 0x1000); if (host->base == NULL) { printk(KERN_ERR "low_i2c: Can't map registers for %s\n", np->full_name); kfree(host); return NULL; } /* Make sure IRQ is disabled */ kw_write_reg(reg_ier, 0); /* Request chip interrupt */ if (request_irq(host->irq, kw_i2c_irq, 0, "keywest i2c", host)) host->irq = NO_IRQ; printk(KERN_INFO "KeyWest i2c @0x%08x irq %d %s\n", *addrp, host->irq, np->full_name); return host; } static void __init kw_i2c_add(struct pmac_i2c_host_kw *host, struct device_node *controller, struct device_node *busnode, int channel) { struct pmac_i2c_bus *bus; bus = kzalloc(sizeof(struct pmac_i2c_bus), GFP_KERNEL); if (bus == NULL) return; bus->controller = of_node_get(controller); bus->busnode = of_node_get(busnode); bus->type = pmac_i2c_bus_keywest; bus->hostdata = host; bus->channel = channel; bus->mode = pmac_i2c_mode_std; bus->open = kw_i2c_open; bus->close = kw_i2c_close; bus->xfer = kw_i2c_xfer; mutex_init(&bus->mutex); if (controller == busnode) bus->flags = pmac_i2c_multibus; list_add(&bus->link, &pmac_i2c_busses); printk(KERN_INFO " channel %d bus %s\n", channel, (controller == busnode) ? "" : busnode->full_name); } static void __init kw_i2c_probe(void) { struct device_node *np, *child, *parent; /* Probe keywest-i2c busses */ for (np = NULL; (np = of_find_compatible_node(np, "i2c","keywest-i2c")) != NULL;){ struct pmac_i2c_host_kw *host; int multibus, chans, i; /* Found one, init a host structure */ host = kw_i2c_host_init(np); if (host == NULL) continue; /* Now check if we have a multibus setup (old style) or if we * have proper bus nodes. Note that the "new" way (proper bus * nodes) might cause us to not create some busses that are * kept hidden in the device-tree. In the future, we might * want to work around that by creating busses without a node * but not for now */ child = of_get_next_child(np, NULL); multibus = !child || strcmp(child->name, "i2c-bus"); of_node_put(child); /* For a multibus setup, we get the bus count based on the * parent type */ if (multibus) { parent = of_get_parent(np); if (parent == NULL) continue; chans = parent->name[0] == 'u' ? 2 : 1; for (i = 0; i < chans; i++) kw_i2c_add(host, np, np, i); } else { for (child = NULL; (child = of_get_next_child(np, child)) != NULL;) { const u32 *reg = of_get_property(child, "reg", NULL); if (reg == NULL) continue; kw_i2c_add(host, np, child, *reg); } } } } /* * * PMU implementation * */ #ifdef CONFIG_ADB_PMU /* * i2c command block to the PMU */ struct pmu_i2c_hdr { u8 bus; u8 mode; u8 bus2; u8 address; u8 sub_addr; u8 comb_addr; u8 count; u8 data[]; }; static void pmu_i2c_complete(struct adb_request *req) { complete(req->arg); } static int pmu_i2c_xfer(struct pmac_i2c_bus *bus, u8 addrdir, int subsize, u32 subaddr, u8 *data, int len) { struct adb_request *req = bus->hostdata; struct pmu_i2c_hdr *hdr = (struct pmu_i2c_hdr *)&req->data[1]; struct completion comp; int read = addrdir & 1; int retry; int rc = 0; /* For now, limit ourselves to 16 bytes transfers */ if (len > 16) return -EINVAL; init_completion(&comp); for (retry = 0; retry < 16; retry++) { memset(req, 0, sizeof(struct adb_request)); hdr->bus = bus->channel; hdr->count = len; switch(bus->mode) { case pmac_i2c_mode_std: if (subsize != 0) return -EINVAL; hdr->address = addrdir; hdr->mode = PMU_I2C_MODE_SIMPLE; break; case pmac_i2c_mode_stdsub: case pmac_i2c_mode_combined: if (subsize != 1) return -EINVAL; hdr->address = addrdir & 0xfe; hdr->comb_addr = addrdir; hdr->sub_addr = subaddr; if (bus->mode == pmac_i2c_mode_stdsub) hdr->mode = PMU_I2C_MODE_STDSUB; else hdr->mode = PMU_I2C_MODE_COMBINED; break; default: return -EINVAL; } INIT_COMPLETION(comp); req->data[0] = PMU_I2C_CMD; req->reply[0] = 0xff; req->nbytes = sizeof(struct pmu_i2c_hdr) + 1; req->done = pmu_i2c_complete; req->arg = ∁ if (!read && len) { memcpy(hdr->data, data, len); req->nbytes += len; } rc = pmu_queue_request(req); if (rc) return rc; wait_for_completion(&comp); if (req->reply[0] == PMU_I2C_STATUS_OK) break; msleep(15); } if (req->reply[0] != PMU_I2C_STATUS_OK) return -EIO; for (retry = 0; retry < 16; retry++) { memset(req, 0, sizeof(struct adb_request)); /* I know that looks like a lot, slow as hell, but darwin * does it so let's be on the safe side for now */ msleep(15); hdr->bus = PMU_I2C_BUS_STATUS; INIT_COMPLETION(comp); req->data[0] = PMU_I2C_CMD; req->reply[0] = 0xff; req->nbytes = 2; req->done = pmu_i2c_complete; req->arg = ∁ rc = pmu_queue_request(req); if (rc) return rc; wait_for_completion(&comp); if (req->reply[0] == PMU_I2C_STATUS_OK && !read) return 0; if (req->reply[0] == PMU_I2C_STATUS_DATAREAD && read) { int rlen = req->reply_len - 1; if (rlen != len) { printk(KERN_WARNING "low_i2c: PMU returned %d" " bytes, expected %d !\n", rlen, len); return -EIO; } if (len) memcpy(data, &req->reply[1], len); return 0; } } return -EIO; } static void __init pmu_i2c_probe(void) { struct pmac_i2c_bus *bus; struct device_node *busnode; int channel, sz; if (!pmu_present()) return; /* There might or might not be a "pmu-i2c" node, we use that * or via-pmu itself, whatever we find. I haven't seen a machine * with separate bus nodes, so we assume a multibus setup */ busnode = of_find_node_by_name(NULL, "pmu-i2c"); if (busnode == NULL) busnode = of_find_node_by_name(NULL, "via-pmu"); if (busnode == NULL) return; printk(KERN_INFO "PMU i2c %s\n", busnode->full_name); /* * We add bus 1 and 2 only for now, bus 0 is "special" */ for (channel = 1; channel <= 2; channel++) { sz = sizeof(struct pmac_i2c_bus) + sizeof(struct adb_request); bus = kzalloc(sz, GFP_KERNEL); if (bus == NULL) return; bus->controller = busnode; bus->busnode = busnode; bus->type = pmac_i2c_bus_pmu; bus->channel = channel; bus->mode = pmac_i2c_mode_std; bus->hostdata = bus + 1; bus->xfer = pmu_i2c_xfer; mutex_init(&bus->mutex); bus->flags = pmac_i2c_multibus; list_add(&bus->link, &pmac_i2c_busses); printk(KERN_INFO " channel %d bus \n", channel); } } #endif /* CONFIG_ADB_PMU */ /* * * SMU implementation * */ #ifdef CONFIG_PMAC_SMU static void smu_i2c_complete(struct smu_i2c_cmd *cmd, void *misc) { complete(misc); } static int smu_i2c_xfer(struct pmac_i2c_bus *bus, u8 addrdir, int subsize, u32 subaddr, u8 *data, int len) { struct smu_i2c_cmd *cmd = bus->hostdata; struct completion comp; int read = addrdir & 1; int rc = 0; if ((read && len > SMU_I2C_READ_MAX) || ((!read) && len > SMU_I2C_WRITE_MAX)) return -EINVAL; memset(cmd, 0, sizeof(struct smu_i2c_cmd)); cmd->info.bus = bus->channel; cmd->info.devaddr = addrdir; cmd->info.datalen = len; switch(bus->mode) { case pmac_i2c_mode_std: if (subsize != 0) return -EINVAL; cmd->info.type = SMU_I2C_TRANSFER_SIMPLE; break; case pmac_i2c_mode_stdsub: case pmac_i2c_mode_combined: if (subsize > 3 || subsize < 1) return -EINVAL; cmd->info.sublen = subsize; /* that's big-endian only but heh ! */ memcpy(&cmd->info.subaddr, ((char *)&subaddr) + (4 - subsize), subsize); if (bus->mode == pmac_i2c_mode_stdsub) cmd->info.type = SMU_I2C_TRANSFER_STDSUB; else cmd->info.type = SMU_I2C_TRANSFER_COMBINED; break; default: return -EINVAL; } if (!read && len) memcpy(cmd->info.data, data, len); init_completion(&comp); cmd->done = smu_i2c_complete; cmd->misc = ∁ rc = smu_queue_i2c(cmd); if (rc < 0) return rc; wait_for_completion(&comp); rc = cmd->status; if (read && len) memcpy(data, cmd->info.data, len); return rc < 0 ? rc : 0; } static void __init smu_i2c_probe(void) { struct device_node *controller, *busnode; struct pmac_i2c_bus *bus; const u32 *reg; int sz; if (!smu_present()) return; controller = of_find_node_by_name(NULL, "smu-i2c-control"); if (controller == NULL) controller = of_find_node_by_name(NULL, "smu"); if (controller == NULL) return; printk(KERN_INFO "SMU i2c %s\n", controller->full_name); /* Look for childs, note that they might not be of the right * type as older device trees mix i2c busses and other thigns * at the same level */ for (busnode = NULL; (busnode = of_get_next_child(controller, busnode)) != NULL;) { if (strcmp(busnode->type, "i2c") && strcmp(busnode->type, "i2c-bus")) continue; reg = of_get_property(busnode, "reg", NULL); if (reg == NULL) continue; sz = sizeof(struct pmac_i2c_bus) + sizeof(struct smu_i2c_cmd); bus = kzalloc(sz, GFP_KERNEL); if (bus == NULL) return; bus->controller = controller; bus->busnode = of_node_get(busnode); bus->type = pmac_i2c_bus_smu; bus->channel = *reg; bus->mode = pmac_i2c_mode_std; bus->hostdata = bus + 1; bus->xfer = smu_i2c_xfer; mutex_init(&bus->mutex); bus->flags = 0; list_add(&bus->link, &pmac_i2c_busses); printk(KERN_INFO " channel %x bus %s\n", bus->channel, busnode->full_name); } } #endif /* CONFIG_PMAC_SMU */ /* * * Core code * */ struct pmac_i2c_bus *pmac_i2c_find_bus(struct device_node *node) { struct device_node *p = of_node_get(node); struct device_node *prev = NULL; struct pmac_i2c_bus *bus; while(p) { list_for_each_entry(bus, &pmac_i2c_busses, link) { if (p == bus->busnode) { if (prev && bus->flags & pmac_i2c_multibus) { const u32 *reg; reg = of_get_property(prev, "reg", NULL); if (!reg) continue; if (((*reg) >> 8) != bus->channel) continue; } of_node_put(p); of_node_put(prev); return bus; } } of_node_put(prev); prev = p; p = of_get_parent(p); } return NULL; } EXPORT_SYMBOL_GPL(pmac_i2c_find_bus); u8 pmac_i2c_get_dev_addr(struct device_node *device) { const u32 *reg = of_get_property(device, "reg", NULL); if (reg == NULL) return 0; return (*reg) & 0xff; } EXPORT_SYMBOL_GPL(pmac_i2c_get_dev_addr); struct device_node *pmac_i2c_get_controller(struct pmac_i2c_bus *bus) { return bus->controller; } EXPORT_SYMBOL_GPL(pmac_i2c_get_controller); struct device_node *pmac_i2c_get_bus_node(struct pmac_i2c_bus *bus) { return bus->busnode; } EXPORT_SYMBOL_GPL(pmac_i2c_get_bus_node); int pmac_i2c_get_type(struct pmac_i2c_bus *bus) { return bus->type; } EXPORT_SYMBOL_GPL(pmac_i2c_get_type); int pmac_i2c_get_flags(struct pmac_i2c_bus *bus) { return bus->flags; } EXPORT_SYMBOL_GPL(pmac_i2c_get_flags); int pmac_i2c_get_channel(struct pmac_i2c_bus *bus) { return bus->channel; } EXPORT_SYMBOL_GPL(pmac_i2c_get_channel); void pmac_i2c_attach_adapter(struct pmac_i2c_bus *bus, struct i2c_adapter *adapter) { WARN_ON(bus->adapter != NULL); bus->adapter = adapter; } EXPORT_SYMBOL_GPL(pmac_i2c_attach_adapter); void pmac_i2c_detach_adapter(struct pmac_i2c_bus *bus, struct i2c_adapter *adapter) { WARN_ON(bus->adapter != adapter); bus->adapter = NULL; } EXPORT_SYMBOL_GPL(pmac_i2c_detach_adapter); struct i2c_adapter *pmac_i2c_get_adapter(struct pmac_i2c_bus *bus) { return bus->adapter; } EXPORT_SYMBOL_GPL(pmac_i2c_get_adapter); struct pmac_i2c_bus *pmac_i2c_adapter_to_bus(struct i2c_adapter *adapter) { struct pmac_i2c_bus *bus; list_for_each_entry(bus, &pmac_i2c_busses, link) if (bus->adapter == adapter) return bus; return NULL; } EXPORT_SYMBOL_GPL(pmac_i2c_adapter_to_bus); int pmac_i2c_match_adapter(struct device_node *dev, struct i2c_adapter *adapter) { struct pmac_i2c_bus *bus = pmac_i2c_find_bus(dev); if (bus == NULL) return 0; return (bus->adapter == adapter); } EXPORT_SYMBOL_GPL(pmac_i2c_match_adapter); int pmac_low_i2c_lock(struct device_node *np) { struct pmac_i2c_bus *bus, *found = NULL; list_for_each_entry(bus, &pmac_i2c_busses, link) { if (np == bus->controller) { found = bus; break; } } if (!found) return -ENODEV; return pmac_i2c_open(bus, 0); } EXPORT_SYMBOL_GPL(pmac_low_i2c_lock); int pmac_low_i2c_unlock(struct device_node *np) { struct pmac_i2c_bus *bus, *found = NULL; list_for_each_entry(bus, &pmac_i2c_busses, link) { if (np == bus->controller) { found = bus; break; } } if (!found) return -ENODEV; pmac_i2c_close(bus); return 0; } EXPORT_SYMBOL_GPL(pmac_low_i2c_unlock); int pmac_i2c_open(struct pmac_i2c_bus *bus, int polled) { int rc; mutex_lock(&bus->mutex); bus->polled = polled || pmac_i2c_force_poll; bus->opened = 1; bus->mode = pmac_i2c_mode_std; if (bus->open && (rc = bus->open(bus)) != 0) { bus->opened = 0; mutex_unlock(&bus->mutex); return rc; } return 0; } EXPORT_SYMBOL_GPL(pmac_i2c_open); void pmac_i2c_close(struct pmac_i2c_bus *bus) { WARN_ON(!bus->opened); if (bus->close) bus->close(bus); bus->opened = 0; mutex_unlock(&bus->mutex); } EXPORT_SYMBOL_GPL(pmac_i2c_close); int pmac_i2c_setmode(struct pmac_i2c_bus *bus, int mode) { WARN_ON(!bus->opened); /* Report me if you see the error below as there might be a new * "combined4" mode that I need to implement for the SMU bus */ if (mode < pmac_i2c_mode_dumb || mode > pmac_i2c_mode_combined) { printk(KERN_ERR "low_i2c: Invalid mode %d requested on" " bus %s !\n", mode, bus->busnode->full_name); return -EINVAL; } bus->mode = mode; return 0; } EXPORT_SYMBOL_GPL(pmac_i2c_setmode); int pmac_i2c_xfer(struct pmac_i2c_bus *bus, u8 addrdir, int subsize, u32 subaddr, u8 *data, int len) { int rc; WARN_ON(!bus->opened); DBG("xfer() chan=%d, addrdir=0x%x, mode=%d, subsize=%d, subaddr=0x%x," " %d bytes, bus %s\n", bus->channel, addrdir, bus->mode, subsize, subaddr, len, bus->busnode->full_name); rc = bus->xfer(bus, addrdir, subsize, subaddr, data, len); #ifdef DEBUG if (rc) DBG("xfer error %d\n", rc); #endif return rc; } EXPORT_SYMBOL_GPL(pmac_i2c_xfer); /* some quirks for platform function decoding */ enum { pmac_i2c_quirk_invmask = 0x00000001u, pmac_i2c_quirk_skip = 0x00000002u, }; static void pmac_i2c_devscan(void (*callback)(struct device_node *dev, int quirks)) { struct pmac_i2c_bus *bus; struct device_node *np; static struct whitelist_ent { char *name; char *compatible; int quirks; } whitelist[] = { /* XXX Study device-tree's & apple drivers are get the quirks * right ! */ /* Workaround: It seems that running the clockspreading * properties on the eMac will cause lockups during boot. * The machine seems to work fine without that. So for now, * let's make sure i2c-hwclock doesn't match about "imic" * clocks and we'll figure out if we really need to do * something special about those later. */ { "i2c-hwclock", "imic5002", pmac_i2c_quirk_skip }, { "i2c-hwclock", "imic5003", pmac_i2c_quirk_skip }, { "i2c-hwclock", NULL, pmac_i2c_quirk_invmask }, { "i2c-cpu-voltage", NULL, 0}, { "temp-monitor", NULL, 0 }, { "supply-monitor", NULL, 0 }, { NULL, NULL, 0 }, }; /* Only some devices need to have platform functions instanciated * here. For now, we have a table. Others, like 9554 i2c GPIOs used * on Xserve, if we ever do a driver for them, will use their own * platform function instance */ list_for_each_entry(bus, &pmac_i2c_busses, link) { for (np = NULL; (np = of_get_next_child(bus->busnode, np)) != NULL;) { struct whitelist_ent *p; /* If multibus, check if device is on that bus */ if (bus->flags & pmac_i2c_multibus) if (bus != pmac_i2c_find_bus(np)) continue; for (p = whitelist; p->name != NULL; p++) { if (strcmp(np->name, p->name)) continue; if (p->compatible && !of_device_is_compatible(np, p->compatible)) continue; if (p->quirks & pmac_i2c_quirk_skip) break; callback(np, p->quirks); break; } } } } #define MAX_I2C_DATA 64 struct pmac_i2c_pf_inst { struct pmac_i2c_bus *bus; u8 addr; u8 buffer[MAX_I2C_DATA]; u8 scratch[MAX_I2C_DATA]; int bytes; int quirks; }; static void* pmac_i2c_do_begin(struct pmf_function *func, struct pmf_args *args) { struct pmac_i2c_pf_inst *inst; struct pmac_i2c_bus *bus; bus = pmac_i2c_find_bus(func->node); if (bus == NULL) { printk(KERN_ERR "low_i2c: Can't find bus for %s (pfunc)\n", func->node->full_name); return NULL; } if (pmac_i2c_open(bus, 0)) { printk(KERN_ERR "low_i2c: Can't open i2c bus for %s (pfunc)\n", func->node->full_name); return NULL; } /* XXX might need GFP_ATOMIC when called during the suspend process, * but then, there are already lots of issues with suspending when * near OOM that need to be resolved, the allocator itself should * probably make GFP_NOIO implicit during suspend */ inst = kzalloc(sizeof(struct pmac_i2c_pf_inst), GFP_KERNEL); if (inst == NULL) { pmac_i2c_close(bus); return NULL; } inst->bus = bus; inst->addr = pmac_i2c_get_dev_addr(func->node); inst->quirks = (int)(long)func->driver_data; return inst; } static void pmac_i2c_do_end(struct pmf_function *func, void *instdata) { struct pmac_i2c_pf_inst *inst = instdata; if (inst == NULL) return; pmac_i2c_close(inst->bus); if (inst) kfree(inst); } static int pmac_i2c_do_read(PMF_STD_ARGS, u32 len) { struct pmac_i2c_pf_inst *inst = instdata; inst->bytes = len; return pmac_i2c_xfer(inst->bus, inst->addr | pmac_i2c_read, 0, 0, inst->buffer, len); } static int pmac_i2c_do_write(PMF_STD_ARGS, u32 len, const u8 *data) { struct pmac_i2c_pf_inst *inst = instdata; return pmac_i2c_xfer(inst->bus, inst->addr | pmac_i2c_write, 0, 0, (u8 *)data, len); } /* This function is used to do the masking & OR'ing for the "rmw" type * callbacks. Ze should apply the mask and OR in the values in the * buffer before writing back. The problem is that it seems that * various darwin drivers implement the mask/or differently, thus * we need to check the quirks first */ static void pmac_i2c_do_apply_rmw(struct pmac_i2c_pf_inst *inst, u32 len, const u8 *mask, const u8 *val) { int i; if (inst->quirks & pmac_i2c_quirk_invmask) { for (i = 0; i < len; i ++) inst->scratch[i] = (inst->buffer[i] & mask[i]) | val[i]; } else { for (i = 0; i < len; i ++) inst->scratch[i] = (inst->buffer[i] & ~mask[i]) | (val[i] & mask[i]); } } static int pmac_i2c_do_rmw(PMF_STD_ARGS, u32 masklen, u32 valuelen, u32 totallen, const u8 *maskdata, const u8 *valuedata) { struct pmac_i2c_pf_inst *inst = instdata; if (masklen > inst->bytes || valuelen > inst->bytes || totallen > inst->bytes || valuelen > masklen) return -EINVAL; pmac_i2c_do_apply_rmw(inst, masklen, maskdata, valuedata); return pmac_i2c_xfer(inst->bus, inst->addr | pmac_i2c_write, 0, 0, inst->scratch, totallen); } static int pmac_i2c_do_read_sub(PMF_STD_ARGS, u8 subaddr, u32 len) { struct pmac_i2c_pf_inst *inst = instdata; inst->bytes = len; return pmac_i2c_xfer(inst->bus, inst->addr | pmac_i2c_read, 1, subaddr, inst->buffer, len); } static int pmac_i2c_do_write_sub(PMF_STD_ARGS, u8 subaddr, u32 len, const u8 *data) { struct pmac_i2c_pf_inst *inst = instdata; return pmac_i2c_xfer(inst->bus, inst->addr | pmac_i2c_write, 1, subaddr, (u8 *)data, len); } static int pmac_i2c_do_set_mode(PMF_STD_ARGS, int mode) { struct pmac_i2c_pf_inst *inst = instdata; return pmac_i2c_setmode(inst->bus, mode); } static int pmac_i2c_do_rmw_sub(PMF_STD_ARGS, u8 subaddr, u32 masklen, u32 valuelen, u32 totallen, const u8 *maskdata, const u8 *valuedata) { struct pmac_i2c_pf_inst *inst = instdata; if (masklen > inst->bytes || valuelen > inst->bytes || totallen > inst->bytes || valuelen > masklen) return -EINVAL; pmac_i2c_do_apply_rmw(inst, masklen, maskdata, valuedata); return pmac_i2c_xfer(inst->bus, inst->addr | pmac_i2c_write, 1, subaddr, inst->scratch, totallen); } static int pmac_i2c_do_mask_and_comp(PMF_STD_ARGS, u32 len, const u8 *maskdata, const u8 *valuedata) { struct pmac_i2c_pf_inst *inst = instdata; int i, match; /* Get return value pointer, it's assumed to be a u32 */ if (!args || !args->count || !args->u[0].p) return -EINVAL; /* Check buffer */ if (len > inst->bytes) return -EINVAL; for (i = 0, match = 1; match && i < len; i ++) if ((inst->buffer[i] & maskdata[i]) != valuedata[i]) match = 0; *args->u[0].p = match; return 0; } static int pmac_i2c_do_delay(PMF_STD_ARGS, u32 duration) { msleep((duration + 999) / 1000); return 0; } static struct pmf_handlers pmac_i2c_pfunc_handlers = { .begin = pmac_i2c_do_begin, .end = pmac_i2c_do_end, .read_i2c = pmac_i2c_do_read, .write_i2c = pmac_i2c_do_write, .rmw_i2c = pmac_i2c_do_rmw, .read_i2c_sub = pmac_i2c_do_read_sub, .write_i2c_sub = pmac_i2c_do_write_sub, .rmw_i2c_sub = pmac_i2c_do_rmw_sub, .set_i2c_mode = pmac_i2c_do_set_mode, .mask_and_compare = pmac_i2c_do_mask_and_comp, .delay = pmac_i2c_do_delay, }; static void __init pmac_i2c_dev_create(struct device_node *np, int quirks) { DBG("dev_create(%s)\n", np->full_name); pmf_register_driver(np, &pmac_i2c_pfunc_handlers, (void *)(long)quirks); } static void __init pmac_i2c_dev_init(struct device_node *np, int quirks) { DBG("dev_create(%s)\n", np->full_name); pmf_do_functions(np, NULL, 0, PMF_FLAGS_ON_INIT, NULL); } static void pmac_i2c_dev_suspend(struct device_node *np, int quirks) { DBG("dev_suspend(%s)\n", np->full_name); pmf_do_functions(np, NULL, 0, PMF_FLAGS_ON_SLEEP, NULL); } static void pmac_i2c_dev_resume(struct device_node *np, int quirks) { DBG("dev_resume(%s)\n", np->full_name); pmf_do_functions(np, NULL, 0, PMF_FLAGS_ON_WAKE, NULL); } void pmac_pfunc_i2c_suspend(void) { pmac_i2c_devscan(pmac_i2c_dev_suspend); } void pmac_pfunc_i2c_resume(void) { pmac_i2c_devscan(pmac_i2c_dev_resume); } /* * Initialize us: probe all i2c busses on the machine, instantiate * busses and platform functions as needed. */ /* This is non-static as it might be called early by smp code */ int __init pmac_i2c_init(void) { static int i2c_inited; if (i2c_inited) return 0; i2c_inited = 1; if (!machine_is(powermac)) return 0; /* Probe keywest-i2c busses */ kw_i2c_probe(); #ifdef CONFIG_ADB_PMU /* Probe PMU i2c busses */ pmu_i2c_probe(); #endif #ifdef CONFIG_PMAC_SMU /* Probe SMU i2c busses */ smu_i2c_probe(); #endif /* Now add plaform functions for some known devices */ pmac_i2c_devscan(pmac_i2c_dev_create); return 0; } arch_initcall(pmac_i2c_init); /* Since pmac_i2c_init can be called too early for the platform device * registration, we need to do it at a later time. In our case, subsys * happens to fit well, though I agree it's a bit of a hack... */ static int __init pmac_i2c_create_platform_devices(void) { struct pmac_i2c_bus *bus; int i = 0; /* In the case where we are initialized from smp_init(), we must * not use the timer (and thus the irq). It's safe from now on * though */ pmac_i2c_force_poll = 0; /* Create platform devices */ list_for_each_entry(bus, &pmac_i2c_busses, link) { bus->platform_dev = platform_device_alloc("i2c-powermac", i++); if (bus->platform_dev == NULL) return -ENOMEM; bus->platform_dev->dev.platform_data = bus; platform_device_add(bus->platform_dev); } /* Now call platform "init" functions */ pmac_i2c_devscan(pmac_i2c_dev_init); return 0; } subsys_initcall(pmac_i2c_create_platform_devices);