/* * Performance counter support for POWER5+/++ (not POWER5) processors. * * Copyright 2009 Paul Mackerras, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include /* * Bits in event code for POWER5+ (POWER5 GS) and POWER5++ (POWER5 GS DD3) */ #define PM_PMC_SH 20 /* PMC number (1-based) for direct events */ #define PM_PMC_MSK 0xf #define PM_PMC_MSKS (PM_PMC_MSK << PM_PMC_SH) #define PM_UNIT_SH 16 /* TTMMUX number and setting - unit select */ #define PM_UNIT_MSK 0xf #define PM_BYTE_SH 12 /* Byte number of event bus to use */ #define PM_BYTE_MSK 7 #define PM_GRS_SH 8 /* Storage subsystem mux select */ #define PM_GRS_MSK 7 #define PM_BUSEVENT_MSK 0x80 /* Set if event uses event bus */ #define PM_PMCSEL_MSK 0x7f /* Values in PM_UNIT field */ #define PM_FPU 0 #define PM_ISU0 1 #define PM_IFU 2 #define PM_ISU1 3 #define PM_IDU 4 #define PM_ISU0_ALT 6 #define PM_GRS 7 #define PM_LSU0 8 #define PM_LSU1 0xc #define PM_LASTUNIT 0xc /* * Bits in MMCR1 for POWER5+ */ #define MMCR1_TTM0SEL_SH 62 #define MMCR1_TTM1SEL_SH 60 #define MMCR1_TTM2SEL_SH 58 #define MMCR1_TTM3SEL_SH 56 #define MMCR1_TTMSEL_MSK 3 #define MMCR1_TD_CP_DBG0SEL_SH 54 #define MMCR1_TD_CP_DBG1SEL_SH 52 #define MMCR1_TD_CP_DBG2SEL_SH 50 #define MMCR1_TD_CP_DBG3SEL_SH 48 #define MMCR1_GRS_L2SEL_SH 46 #define MMCR1_GRS_L2SEL_MSK 3 #define MMCR1_GRS_L3SEL_SH 44 #define MMCR1_GRS_L3SEL_MSK 3 #define MMCR1_GRS_MCSEL_SH 41 #define MMCR1_GRS_MCSEL_MSK 7 #define MMCR1_GRS_FABSEL_SH 39 #define MMCR1_GRS_FABSEL_MSK 3 #define MMCR1_PMC1_ADDER_SEL_SH 35 #define MMCR1_PMC2_ADDER_SEL_SH 34 #define MMCR1_PMC3_ADDER_SEL_SH 33 #define MMCR1_PMC4_ADDER_SEL_SH 32 #define MMCR1_PMC1SEL_SH 25 #define MMCR1_PMC2SEL_SH 17 #define MMCR1_PMC3SEL_SH 9 #define MMCR1_PMC4SEL_SH 1 #define MMCR1_PMCSEL_SH(n) (MMCR1_PMC1SEL_SH - (n) * 8) #define MMCR1_PMCSEL_MSK 0x7f /* * Bits in MMCRA */ /* * Layout of constraint bits: * 6666555555555544444444443333333333222222222211111111110000000000 * 3210987654321098765432109876543210987654321098765432109876543210 * [ ><><>< ><> <><>[ > < >< >< >< ><><><><><><> * NC G0G1G2 G3 T0T1 UC B0 B1 B2 B3 P6P5P4P3P2P1 * * NC - number of counters * 51: NC error 0x0008_0000_0000_0000 * 48-50: number of events needing PMC1-4 0x0007_0000_0000_0000 * * G0..G3 - GRS mux constraints * 46-47: GRS_L2SEL value * 44-45: GRS_L3SEL value * 41-44: GRS_MCSEL value * 39-40: GRS_FABSEL value * Note that these match up with their bit positions in MMCR1 * * T0 - TTM0 constraint * 36-37: TTM0SEL value (0=FPU, 2=IFU, 3=ISU1) 0x30_0000_0000 * * T1 - TTM1 constraint * 34-35: TTM1SEL value (0=IDU, 3=GRS) 0x0c_0000_0000 * * UC - unit constraint: can't have all three of FPU|IFU|ISU1, ISU0, IDU|GRS * 33: UC3 error 0x02_0000_0000 * 32: FPU|IFU|ISU1 events needed 0x01_0000_0000 * 31: ISU0 events needed 0x01_8000_0000 * 30: IDU|GRS events needed 0x00_4000_0000 * * B0 * 24-27: Byte 0 event source 0x0f00_0000 * Encoding as for the event code * * B1, B2, B3 * 20-23, 16-19, 12-15: Byte 1, 2, 3 event sources * * P6 * 11: P6 error 0x800 * 10-11: Count of events needing PMC6 * * P1..P5 * 0-9: Count of events needing PMC1..PMC5 */ static const int grsel_shift[8] = { MMCR1_GRS_L2SEL_SH, MMCR1_GRS_L2SEL_SH, MMCR1_GRS_L2SEL_SH, MMCR1_GRS_L3SEL_SH, MMCR1_GRS_L3SEL_SH, MMCR1_GRS_L3SEL_SH, MMCR1_GRS_MCSEL_SH, MMCR1_GRS_FABSEL_SH }; /* Masks and values for using events from the various units */ static u64 unit_cons[PM_LASTUNIT+1][2] = { [PM_FPU] = { 0x3200000000ull, 0x0100000000ull }, [PM_ISU0] = { 0x0200000000ull, 0x0080000000ull }, [PM_ISU1] = { 0x3200000000ull, 0x3100000000ull }, [PM_IFU] = { 0x3200000000ull, 0x2100000000ull }, [PM_IDU] = { 0x0e00000000ull, 0x0040000000ull }, [PM_GRS] = { 0x0e00000000ull, 0x0c40000000ull }, }; static int power5p_get_constraint(u64 event, u64 *maskp, u64 *valp) { int pmc, byte, unit, sh; int bit, fmask; u64 mask = 0, value = 0; pmc = (event >> PM_PMC_SH) & PM_PMC_MSK; if (pmc) { if (pmc > 6) return -1; sh = (pmc - 1) * 2; mask |= 2 << sh; value |= 1 << sh; if (pmc >= 5 && !(event == 0x500009 || event == 0x600005)) return -1; } if (event & PM_BUSEVENT_MSK) { unit = (event >> PM_UNIT_SH) & PM_UNIT_MSK; if (unit > PM_LASTUNIT) return -1; if (unit == PM_ISU0_ALT) unit = PM_ISU0; mask |= unit_cons[unit][0]; value |= unit_cons[unit][1]; byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK; if (byte >= 4) { if (unit != PM_LSU1) return -1; /* Map LSU1 low word (bytes 4-7) to unit LSU1+1 */ ++unit; byte &= 3; } if (unit == PM_GRS) { bit = event & 7; fmask = (bit == 6)? 7: 3; sh = grsel_shift[bit]; mask |= (u64)fmask << sh; value |= (u64)((event >> PM_GRS_SH) & fmask) << sh; } /* Set byte lane select field */ mask |= 0xfULL << (24 - 4 * byte); value |= (u64)unit << (24 - 4 * byte); } if (pmc < 5) { /* need a counter from PMC1-4 set */ mask |= 0x8000000000000ull; value |= 0x1000000000000ull; } *maskp = mask; *valp = value; return 0; } static int power5p_limited_pmc_event(u64 event) { int pmc = (event >> PM_PMC_SH) & PM_PMC_MSK; return pmc == 5 || pmc == 6; } #define MAX_ALT 3 /* at most 3 alternatives for any event */ static const unsigned int event_alternatives[][MAX_ALT] = { { 0x100c0, 0x40001f }, /* PM_GCT_FULL_CYC */ { 0x120e4, 0x400002 }, /* PM_GRP_DISP_REJECT */ { 0x230e2, 0x323087 }, /* PM_BR_PRED_CR */ { 0x230e3, 0x223087, 0x3230a0 }, /* PM_BR_PRED_TA */ { 0x410c7, 0x441084 }, /* PM_THRD_L2MISS_BOTH_CYC */ { 0x800c4, 0xc20e0 }, /* PM_DTLB_MISS */ { 0xc50c6, 0xc60e0 }, /* PM_MRK_DTLB_MISS */ { 0x100005, 0x600005 }, /* PM_RUN_CYC */ { 0x100009, 0x200009 }, /* PM_INST_CMPL */ { 0x200015, 0x300015 }, /* PM_LSU_LMQ_SRQ_EMPTY_CYC */ { 0x300009, 0x400009 }, /* PM_INST_DISP */ }; /* * Scan the alternatives table for a match and return the * index into the alternatives table if found, else -1. */ static int find_alternative(unsigned int event) { int i, j; for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) { if (event < event_alternatives[i][0]) break; for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j) if (event == event_alternatives[i][j]) return i; } return -1; } static const unsigned char bytedecode_alternatives[4][4] = { /* PMC 1 */ { 0x21, 0x23, 0x25, 0x27 }, /* PMC 2 */ { 0x07, 0x17, 0x0e, 0x1e }, /* PMC 3 */ { 0x20, 0x22, 0x24, 0x26 }, /* PMC 4 */ { 0x07, 0x17, 0x0e, 0x1e } }; /* * Some direct events for decodes of event bus byte 3 have alternative * PMCSEL values on other counters. This returns the alternative * event code for those that do, or -1 otherwise. This also handles * alternative PCMSEL values for add events. */ static s64 find_alternative_bdecode(u64 event) { int pmc, altpmc, pp, j; pmc = (event >> PM_PMC_SH) & PM_PMC_MSK; if (pmc == 0 || pmc > 4) return -1; altpmc = 5 - pmc; /* 1 <-> 4, 2 <-> 3 */ pp = event & PM_PMCSEL_MSK; for (j = 0; j < 4; ++j) { if (bytedecode_alternatives[pmc - 1][j] == pp) { return (event & ~(PM_PMC_MSKS | PM_PMCSEL_MSK)) | (altpmc << PM_PMC_SH) | bytedecode_alternatives[altpmc - 1][j]; } } /* new decode alternatives for power5+ */ if (pmc == 1 && (pp == 0x0d || pp == 0x0e)) return event + (2 << PM_PMC_SH) + (0x2e - 0x0d); if (pmc == 3 && (pp == 0x2e || pp == 0x2f)) return event - (2 << PM_PMC_SH) - (0x2e - 0x0d); /* alternative add event encodings */ if (pp == 0x10 || pp == 0x28) return ((event ^ (0x10 ^ 0x28)) & ~PM_PMC_MSKS) | (altpmc << PM_PMC_SH); return -1; } static int power5p_get_alternatives(u64 event, unsigned int flags, u64 alt[]) { int i, j, nalt = 1; int nlim; s64 ae; alt[0] = event; nalt = 1; nlim = power5p_limited_pmc_event(event); i = find_alternative(event); if (i >= 0) { for (j = 0; j < MAX_ALT; ++j) { ae = event_alternatives[i][j]; if (ae && ae != event) alt[nalt++] = ae; nlim += power5p_limited_pmc_event(ae); } } else { ae = find_alternative_bdecode(event); if (ae > 0) alt[nalt++] = ae; } if (flags & PPMU_ONLY_COUNT_RUN) { /* * We're only counting in RUN state, * so PM_CYC is equivalent to PM_RUN_CYC * and PM_INST_CMPL === PM_RUN_INST_CMPL. * This doesn't include alternatives that don't provide * any extra flexibility in assigning PMCs (e.g. * 0x100005 for PM_RUN_CYC vs. 0xf for PM_CYC). * Note that even with these additional alternatives * we never end up with more than 3 alternatives for any event. */ j = nalt; for (i = 0; i < nalt; ++i) { switch (alt[i]) { case 0xf: /* PM_CYC */ alt[j++] = 0x600005; /* PM_RUN_CYC */ ++nlim; break; case 0x600005: /* PM_RUN_CYC */ alt[j++] = 0xf; break; case 0x100009: /* PM_INST_CMPL */ alt[j++] = 0x500009; /* PM_RUN_INST_CMPL */ ++nlim; break; case 0x500009: /* PM_RUN_INST_CMPL */ alt[j++] = 0x100009; /* PM_INST_CMPL */ alt[j++] = 0x200009; break; } } nalt = j; } if (!(flags & PPMU_LIMITED_PMC_OK) && nlim) { /* remove the limited PMC events */ j = 0; for (i = 0; i < nalt; ++i) { if (!power5p_limited_pmc_event(alt[i])) { alt[j] = alt[i]; ++j; } } nalt = j; } else if ((flags & PPMU_LIMITED_PMC_REQD) && nlim < nalt) { /* remove all but the limited PMC events */ j = 0; for (i = 0; i < nalt; ++i) { if (power5p_limited_pmc_event(alt[i])) { alt[j] = alt[i]; ++j; } } nalt = j; } return nalt; } /* * Map of which direct events on which PMCs are marked instruction events. * Indexed by PMCSEL value, bit i (LE) set if PMC i is a marked event. * Bit 0 is set if it is marked for all PMCs. * The 0x80 bit indicates a byte decode PMCSEL value. */ static unsigned char direct_event_is_marked[0x28] = { 0, /* 00 */ 0x1f, /* 01 PM_IOPS_CMPL */ 0x2, /* 02 PM_MRK_GRP_DISP */ 0xe, /* 03 PM_MRK_ST_CMPL, PM_MRK_ST_GPS, PM_MRK_ST_CMPL_INT */ 0, /* 04 */ 0x1c, /* 05 PM_MRK_BRU_FIN, PM_MRK_INST_FIN, PM_MRK_CRU_FIN */ 0x80, /* 06 */ 0x80, /* 07 */ 0, 0, 0,/* 08 - 0a */ 0x18, /* 0b PM_THRESH_TIMEO, PM_MRK_GRP_TIMEO */ 0, /* 0c */ 0x80, /* 0d */ 0x80, /* 0e */ 0, /* 0f */ 0, /* 10 */ 0x14, /* 11 PM_MRK_GRP_BR_REDIR, PM_MRK_GRP_IC_MISS */ 0, /* 12 */ 0x10, /* 13 PM_MRK_GRP_CMPL */ 0x1f, /* 14 PM_GRP_MRK, PM_MRK_{FXU,FPU,LSU}_FIN */ 0x2, /* 15 PM_MRK_GRP_ISSUED */ 0x80, /* 16 */ 0x80, /* 17 */ 0, 0, 0, 0, 0, 0x80, /* 1d */ 0x80, /* 1e */ 0, /* 1f */ 0x80, /* 20 */ 0x80, /* 21 */ 0x80, /* 22 */ 0x80, /* 23 */ 0x80, /* 24 */ 0x80, /* 25 */ 0x80, /* 26 */ 0x80, /* 27 */ }; /* * Returns 1 if event counts things relating to marked instructions * and thus needs the MMCRA_SAMPLE_ENABLE bit set, or 0 if not. */ static int power5p_marked_instr_event(u64 event) { int pmc, psel; int bit, byte, unit; u32 mask; pmc = (event >> PM_PMC_SH) & PM_PMC_MSK; psel = event & PM_PMCSEL_MSK; if (pmc >= 5) return 0; bit = -1; if (psel < sizeof(direct_event_is_marked)) { if (direct_event_is_marked[psel] & (1 << pmc)) return 1; if (direct_event_is_marked[psel] & 0x80) bit = 4; else if (psel == 0x08) bit = pmc - 1; else if (psel == 0x10) bit = 4 - pmc; else if (psel == 0x1b && (pmc == 1 || pmc == 3)) bit = 4; } else if ((psel & 0x48) == 0x40) { bit = psel & 7; } else if (psel == 0x28) { bit = pmc - 1; } else if (pmc == 3 && (psel == 0x2e || psel == 0x2f)) { bit = 4; } if (!(event & PM_BUSEVENT_MSK) || bit == -1) return 0; byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK; unit = (event >> PM_UNIT_SH) & PM_UNIT_MSK; if (unit == PM_LSU0) { /* byte 1 bits 0-7, byte 2 bits 0,2-4,6 */ mask = 0x5dff00; } else if (unit == PM_LSU1 && byte >= 4) { byte -= 4; /* byte 5 bits 6-7, byte 6 bits 0,4, byte 7 bits 0-4,6 */ mask = 0x5f11c000; } else return 0; return (mask >> (byte * 8 + bit)) & 1; } static int power5p_compute_mmcr(u64 event[], int n_ev, unsigned int hwc[], u64 mmcr[]) { u64 mmcr1 = 0; u64 mmcra = 0; unsigned int pmc, unit, byte, psel; unsigned int ttm; int i, isbus, bit, grsel; unsigned int pmc_inuse = 0; unsigned char busbyte[4]; unsigned char unituse[16]; int ttmuse; if (n_ev > 6) return -1; /* First pass to count resource use */ memset(busbyte, 0, sizeof(busbyte)); memset(unituse, 0, sizeof(unituse)); for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK; if (pmc) { if (pmc > 6) return -1; if (pmc_inuse & (1 << (pmc - 1))) return -1; pmc_inuse |= 1 << (pmc - 1); } if (event[i] & PM_BUSEVENT_MSK) { unit = (event[i] >> PM_UNIT_SH) & PM_UNIT_MSK; byte = (event[i] >> PM_BYTE_SH) & PM_BYTE_MSK; if (unit > PM_LASTUNIT) return -1; if (unit == PM_ISU0_ALT) unit = PM_ISU0; if (byte >= 4) { if (unit != PM_LSU1) return -1; ++unit; byte &= 3; } if (busbyte[byte] && busbyte[byte] != unit) return -1; busbyte[byte] = unit; unituse[unit] = 1; } } /* * Assign resources and set multiplexer selects. * * PM_ISU0 can go either on TTM0 or TTM1, but that's the only * choice we have to deal with. */ if (unituse[PM_ISU0] & (unituse[PM_FPU] | unituse[PM_IFU] | unituse[PM_ISU1])) { unituse[PM_ISU0_ALT] = 1; /* move ISU to TTM1 */ unituse[PM_ISU0] = 0; } /* Set TTM[01]SEL fields. */ ttmuse = 0; for (i = PM_FPU; i <= PM_ISU1; ++i) { if (!unituse[i]) continue; if (ttmuse++) return -1; mmcr1 |= (u64)i << MMCR1_TTM0SEL_SH; } ttmuse = 0; for (; i <= PM_GRS; ++i) { if (!unituse[i]) continue; if (ttmuse++) return -1; mmcr1 |= (u64)(i & 3) << MMCR1_TTM1SEL_SH; } if (ttmuse > 1) return -1; /* Set byte lane select fields, TTM[23]SEL and GRS_*SEL. */ for (byte = 0; byte < 4; ++byte) { unit = busbyte[byte]; if (!unit) continue; if (unit == PM_ISU0 && unituse[PM_ISU0_ALT]) { /* get ISU0 through TTM1 rather than TTM0 */ unit = PM_ISU0_ALT; } else if (unit == PM_LSU1 + 1) { /* select lower word of LSU1 for this byte */ mmcr1 |= 1ull << (MMCR1_TTM3SEL_SH + 3 - byte); } ttm = unit >> 2; mmcr1 |= (u64)ttm << (MMCR1_TD_CP_DBG0SEL_SH - 2 * byte); } /* Second pass: assign PMCs, set PMCxSEL and PMCx_ADDER_SEL fields */ for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK; unit = (event[i] >> PM_UNIT_SH) & PM_UNIT_MSK; byte = (event[i] >> PM_BYTE_SH) & PM_BYTE_MSK; psel = event[i] & PM_PMCSEL_MSK; isbus = event[i] & PM_BUSEVENT_MSK; if (!pmc) { /* Bus event or any-PMC direct event */ for (pmc = 0; pmc < 4; ++pmc) { if (!(pmc_inuse & (1 << pmc))) break; } if (pmc >= 4) return -1; pmc_inuse |= 1 << pmc; } else if (pmc <= 4) { /* Direct event */ --pmc; if (isbus && (byte & 2) && (psel == 8 || psel == 0x10 || psel == 0x28)) /* add events on higher-numbered bus */ mmcr1 |= 1ull << (MMCR1_PMC1_ADDER_SEL_SH - pmc); } else { /* Instructions or run cycles on PMC5/6 */ --pmc; } if (isbus && unit == PM_GRS) { bit = psel & 7; grsel = (event[i] >> PM_GRS_SH) & PM_GRS_MSK; mmcr1 |= (u64)grsel << grsel_shift[bit]; } if (power5p_marked_instr_event(event[i])) mmcra |= MMCRA_SAMPLE_ENABLE; if ((psel & 0x58) == 0x40 && (byte & 1) != ((pmc >> 1) & 1)) /* select alternate byte lane */ psel |= 0x10; if (pmc <= 3) mmcr1 |= psel << MMCR1_PMCSEL_SH(pmc); hwc[i] = pmc; } /* Return MMCRx values */ mmcr[0] = 0; if (pmc_inuse & 1) mmcr[0] = MMCR0_PMC1CE; if (pmc_inuse & 0x3e) mmcr[0] |= MMCR0_PMCjCE; mmcr[1] = mmcr1; mmcr[2] = mmcra; return 0; } static void power5p_disable_pmc(unsigned int pmc, u64 mmcr[]) { if (pmc <= 3) mmcr[1] &= ~(0x7fUL << MMCR1_PMCSEL_SH(pmc)); } static int power5p_generic_events[] = { [PERF_COUNT_CPU_CYCLES] = 0xf, [PERF_COUNT_INSTRUCTIONS] = 0x100009, [PERF_COUNT_CACHE_REFERENCES] = 0x1c10a8, /* LD_REF_L1 */ [PERF_COUNT_CACHE_MISSES] = 0x3c1088, /* LD_MISS_L1 */ [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x230e4, /* BR_ISSUED */ [PERF_COUNT_BRANCH_MISSES] = 0x230e5, /* BR_MPRED_CR */ }; struct power_pmu power5p_pmu = { .n_counter = 6, .max_alternatives = MAX_ALT, .add_fields = 0x7000000000055ull, .test_adder = 0x3000040000000ull, .compute_mmcr = power5p_compute_mmcr, .get_constraint = power5p_get_constraint, .get_alternatives = power5p_get_alternatives, .disable_pmc = power5p_disable_pmc, .n_generic = ARRAY_SIZE(power5p_generic_events), .generic_events = power5p_generic_events, .flags = PPMU_LIMITED_PMC5_6, .limited_pmc_event = power5p_limited_pmc_event, };