/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 1995 Waldorf GmbH * Copyright (C) 1994 - 2000, 06 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. * Author: Maciej W. Rozycki */ #ifndef _ASM_IO_H #define _ASM_IO_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Slowdown I/O port space accesses for antique hardware. */ #undef CONF_SLOWDOWN_IO /* * Raw operations are never swapped in software. OTOH values that raw * operations are working on may or may not have been swapped by the bus * hardware. An example use would be for flash memory that's used for * execute in place. */ # define __raw_ioswabb(a, x) (x) # define __raw_ioswabw(a, x) (x) # define __raw_ioswabl(a, x) (x) # define __raw_ioswabq(a, x) (x) # define ____raw_ioswabq(a, x) (x) /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ #define IO_SPACE_LIMIT 0xffff /* * On MIPS I/O ports are memory mapped, so we access them using normal * load/store instructions. mips_io_port_base is the virtual address to * which all ports are being mapped. For sake of efficiency some code * assumes that this is an address that can be loaded with a single lui * instruction, so the lower 16 bits must be zero. Should be true on * on any sane architecture; generic code does not use this assumption. */ extern const unsigned long mips_io_port_base; /* * Gcc will generate code to load the value of mips_io_port_base after each * function call which may be fairly wasteful in some cases. So we don't * play quite by the book. We tell gcc mips_io_port_base is a long variable * which solves the code generation issue. Now we need to violate the * aliasing rules a little to make initialization possible and finally we * will need the barrier() to fight side effects of the aliasing chat. * This trickery will eventually collapse under gcc's optimizer. Oh well. */ static inline void set_io_port_base(unsigned long base) { * (unsigned long *) &mips_io_port_base = base; barrier(); } /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus * */ #define __SLOW_DOWN_IO \ __asm__ __volatile__( \ "sb\t$0,0x80(%0)" \ : : "r" (mips_io_port_base)); #ifdef CONF_SLOWDOWN_IO #ifdef REALLY_SLOW_IO #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } #else #define SLOW_DOWN_IO __SLOW_DOWN_IO #endif #else #define SLOW_DOWN_IO #endif /* * virt_to_phys - map virtual addresses to physical * @address: address to remap * * The returned physical address is the physical (CPU) mapping for * the memory address given. It is only valid to use this function on * addresses directly mapped or allocated via kmalloc. * * This function does not give bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline unsigned long virt_to_phys(volatile const void *address) { return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET; } /* * phys_to_virt - map physical address to virtual * @address: address to remap * * The returned virtual address is a current CPU mapping for * the memory address given. It is only valid to use this function on * addresses that have a kernel mapping * * This function does not handle bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline void * phys_to_virt(unsigned long address) { return (void *)(address + PAGE_OFFSET - PHYS_OFFSET); } /* * ISA I/O bus memory addresses are 1:1 with the physical address. */ static inline unsigned long isa_virt_to_bus(volatile void * address) { return (unsigned long)address - PAGE_OFFSET; } static inline void * isa_bus_to_virt(unsigned long address) { return (void *)(address + PAGE_OFFSET); } #define isa_page_to_bus page_to_phys /* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them for x86 for legacy drivers, though. */ #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt /* * Change "struct page" to physical address. */ #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags); extern void __iounmap(const volatile void __iomem *addr); static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size, unsigned long flags) { void __iomem *addr = plat_ioremap(offset, size, flags); if (addr) return addr; #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL)) if (cpu_has_64bit_addresses) { u64 base = UNCAC_BASE; /* * R10000 supports a 2 bit uncached attribute therefore * UNCAC_BASE may not equal IO_BASE. */ if (flags == _CACHE_UNCACHED) base = (u64) IO_BASE; return (void __iomem *) (unsigned long) (base + offset); } else if (__builtin_constant_p(offset) && __builtin_constant_p(size) && __builtin_constant_p(flags)) { phys_t phys_addr, last_addr; phys_addr = fixup_bigphys_addr(offset, size); /* Don't allow wraparound or zero size. */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; /* * Map uncached objects in the low 512MB of address * space using KSEG1. */ if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) && flags == _CACHE_UNCACHED) return (void __iomem *) (unsigned long)CKSEG1ADDR(phys_addr); } return __ioremap(offset, size, flags); #undef __IS_LOW512 } /* * ioremap - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. */ #define ioremap(offset, size) \ __ioremap_mode((offset), (size), _CACHE_UNCACHED) /* * ioremap_nocache - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked uncachable * on the CPU as well as honouring existing caching rules from things like * the PCI bus. Note that there are other caches and buffers on many * busses. In paticular driver authors should read up on PCI writes * * It's useful if some control registers are in such an area and * write combining or read caching is not desirable: */ #define ioremap_nocache(offset, size) \ __ioremap_mode((offset), (size), _CACHE_UNCACHED) /* * ioremap_cachable - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked cachable by * the CPU. Also enables full write-combining. Useful for some * memory-like regions on I/O busses. */ #define ioremap_cachable(offset, size) \ __ioremap_mode((offset), (size), _page_cachable_default) /* * These two are MIPS specific ioremap variant. ioremap_cacheable_cow * requests a cachable mapping, ioremap_uncached_accelerated requests a * mapping using the uncached accelerated mode which isn't supported on * all processors. */ #define ioremap_cacheable_cow(offset, size) \ __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) #define ioremap_uncached_accelerated(offset, size) \ __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) static inline void iounmap(const volatile void __iomem *addr) { if (plat_iounmap(addr)) return; #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1) if (cpu_has_64bit_addresses || (__builtin_constant_p(addr) && __IS_KSEG1(addr))) return; __iounmap(addr); #undef __IS_KSEG1 } #ifdef CONFIG_CPU_CAVIUM_OCTEON #define war_octeon_io_reorder_wmb() wmb() #else #define war_octeon_io_reorder_wmb() do { } while (0) #endif #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \ \ static inline void pfx##write##bwlq(type val, \ volatile void __iomem *mem) \ { \ volatile type *__mem; \ type __val; \ \ war_octeon_io_reorder_wmb(); \ \ __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ \ __val = pfx##ioswab##bwlq(__mem, val); \ \ if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ *__mem = __val; \ else if (cpu_has_64bits) { \ unsigned long __flags; \ type __tmp; \ \ if (irq) \ local_irq_save(__flags); \ __asm__ __volatile__( \ ".set mips3" "\t\t# __writeq""\n\t" \ "dsll32 %L0, %L0, 0" "\n\t" \ "dsrl32 %L0, %L0, 0" "\n\t" \ "dsll32 %M0, %M0, 0" "\n\t" \ "or %L0, %L0, %M0" "\n\t" \ "sd %L0, %2" "\n\t" \ ".set mips0" "\n" \ : "=r" (__tmp) \ : "0" (__val), "m" (*__mem)); \ if (irq) \ local_irq_restore(__flags); \ } else \ BUG(); \ } \ \ static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ { \ volatile type *__mem; \ type __val; \ \ __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ \ if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ __val = *__mem; \ else if (cpu_has_64bits) { \ unsigned long __flags; \ \ if (irq) \ local_irq_save(__flags); \ __asm__ __volatile__( \ ".set mips3" "\t\t# __readq" "\n\t" \ "ld %L0, %1" "\n\t" \ "dsra32 %M0, %L0, 0" "\n\t" \ "sll %L0, %L0, 0" "\n\t" \ ".set mips0" "\n" \ : "=r" (__val) \ : "m" (*__mem)); \ if (irq) \ local_irq_restore(__flags); \ } else { \ __val = 0; \ BUG(); \ } \ \ return pfx##ioswab##bwlq(__mem, __val); \ } #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ \ static inline void pfx##out##bwlq##p(type val, unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ war_octeon_io_reorder_wmb(); \ \ __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ \ __val = pfx##ioswab##bwlq(__addr, val); \ \ /* Really, we want this to be atomic */ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ *__addr = __val; \ slow; \ } \ \ static inline type pfx##in##bwlq##p(unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ __val = *__addr; \ slow; \ \ return pfx##ioswab##bwlq(__addr, __val); \ } #define __BUILD_MEMORY_PFX(bus, bwlq, type) \ \ __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) #define BUILDIO_MEM(bwlq, type) \ \ __BUILD_MEMORY_PFX(__raw_, bwlq, type) \ __BUILD_MEMORY_PFX(, bwlq, type) \ __BUILD_MEMORY_PFX(__mem_, bwlq, type) \ BUILDIO_MEM(b, u8) BUILDIO_MEM(w, u16) BUILDIO_MEM(l, u32) BUILDIO_MEM(q, u64) #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) #define BUILDIO_IOPORT(bwlq, type) \ __BUILD_IOPORT_PFX(, bwlq, type) \ __BUILD_IOPORT_PFX(__mem_, bwlq, type) BUILDIO_IOPORT(b, u8) BUILDIO_IOPORT(w, u16) BUILDIO_IOPORT(l, u32) #ifdef CONFIG_64BIT BUILDIO_IOPORT(q, u64) #endif #define __BUILDIO(bwlq, type) \ \ __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0) __BUILDIO(q, u64) #define readb_relaxed readb #define readw_relaxed readw #define readl_relaxed readl #define readq_relaxed readq #define readb_be(addr) \ __raw_readb((__force unsigned *)(addr)) #define readw_be(addr) \ be16_to_cpu(__raw_readw((__force unsigned *)(addr))) #define readl_be(addr) \ be32_to_cpu(__raw_readl((__force unsigned *)(addr))) #define readq_be(addr) \ be64_to_cpu(__raw_readq((__force unsigned *)(addr))) #define writeb_be(val, addr) \ __raw_writeb((val), (__force unsigned *)(addr)) #define writew_be(val, addr) \ __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) #define writel_be(val, addr) \ __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) #define writeq_be(val, addr) \ __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) /* * Some code tests for these symbols */ #define readq readq #define writeq writeq #define __BUILD_MEMORY_STRING(bwlq, type) \ \ static inline void writes##bwlq(volatile void __iomem *mem, \ const void *addr, unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __mem_write##bwlq(*__addr, mem); \ __addr++; \ } \ } \ \ static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __mem_read##bwlq(mem); \ __addr++; \ } \ } #define __BUILD_IOPORT_STRING(bwlq, type) \ \ static inline void outs##bwlq(unsigned long port, const void *addr, \ unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __mem_out##bwlq(*__addr, port); \ __addr++; \ } \ } \ \ static inline void ins##bwlq(unsigned long port, void *addr, \ unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __mem_in##bwlq(port); \ __addr++; \ } \ } #define BUILDSTRING(bwlq, type) \ \ __BUILD_MEMORY_STRING(bwlq, type) \ __BUILD_IOPORT_STRING(bwlq, type) BUILDSTRING(b, u8) BUILDSTRING(w, u16) BUILDSTRING(l, u32) #ifdef CONFIG_64BIT BUILDSTRING(q, u64) #endif #ifdef CONFIG_CPU_CAVIUM_OCTEON #define mmiowb() wmb() #else /* Depends on MIPS II instruction set */ #define mmiowb() asm volatile ("sync" ::: "memory") #endif static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) { memset((void __force *) addr, val, count); } static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) { memcpy(dst, (void __force *) src, count); } static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) { memcpy((void __force *) dst, src, count); } /* * The caches on some architectures aren't dma-coherent and have need to * handle this in software. There are three types of operations that * can be applied to dma buffers. * * - dma_cache_wback_inv(start, size) makes caches and coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_wback(start, size) makes caches and coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_inv(start, size) invalidates the affected parts of the * caches. Dirty lines of the caches may be written back or simply * be discarded. This operation is necessary before dma operations * to the memory. * * This API used to be exported; it now is for arch code internal use only. */ #ifdef CONFIG_DMA_NONCOHERENT extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size) #define dma_cache_wback(start, size) _dma_cache_wback(start, size) #define dma_cache_inv(start, size) _dma_cache_inv(start, size) #else /* Sane hardware */ #define dma_cache_wback_inv(start,size) \ do { (void) (start); (void) (size); } while (0) #define dma_cache_wback(start,size) \ do { (void) (start); (void) (size); } while (0) #define dma_cache_inv(start,size) \ do { (void) (start); (void) (size); } while (0) #endif /* CONFIG_DMA_NONCOHERENT */ /* * Read a 32-bit register that requires a 64-bit read cycle on the bus. * Avoid interrupt mucking, just adjust the address for 4-byte access. * Assume the addresses are 8-byte aligned. */ #ifdef __MIPSEB__ #define __CSR_32_ADJUST 4 #else #define __CSR_32_ADJUST 0 #endif #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif /* _ASM_IO_H */