/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * This file contains NUMA specific variables and functions which can * be split away from DISCONTIGMEM and are used on NUMA machines with * contiguous memory. * 2002/08/07 Erich Focht * Populate cpu entries in sysfs for non-numa systems as well * Intel Corporation - Ashok Raj * 02/27/2006 Zhang, Yanmin * Populate cpu cache entries in sysfs for cpu cache info */ #include #include #include #include #include #include #include #include #include #include #include static struct ia64_cpu *sysfs_cpus; int arch_register_cpu(int num) { #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU) /* * If CPEI can be re-targetted or if this is not * CPEI target, then it is hotpluggable */ if (can_cpei_retarget() || !is_cpu_cpei_target(num)) sysfs_cpus[num].cpu.hotpluggable = 1; map_cpu_to_node(num, node_cpuid[num].nid); #endif return register_cpu(&sysfs_cpus[num].cpu, num); } #ifdef CONFIG_HOTPLUG_CPU void arch_unregister_cpu(int num) { unregister_cpu(&sysfs_cpus[num].cpu); unmap_cpu_from_node(num, cpu_to_node(num)); } EXPORT_SYMBOL(arch_register_cpu); EXPORT_SYMBOL(arch_unregister_cpu); #endif /*CONFIG_HOTPLUG_CPU*/ static int __init topology_init(void) { int i, err = 0; #ifdef CONFIG_NUMA /* * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? */ for_each_online_node(i) { if ((err = register_one_node(i))) goto out; } #endif sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL); if (!sysfs_cpus) panic("kzalloc in topology_init failed - NR_CPUS too big?"); for_each_present_cpu(i) { if((err = arch_register_cpu(i))) goto out; } out: return err; } subsys_initcall(topology_init); /* * Export cpu cache information through sysfs */ /* * A bunch of string array to get pretty printing */ static const char *cache_types[] = { "", /* not used */ "Instruction", "Data", "Unified" /* unified */ }; static const char *cache_mattrib[]={ "WriteThrough", "WriteBack", "", /* reserved */ "" /* reserved */ }; struct cache_info { pal_cache_config_info_t cci; cpumask_t shared_cpu_map; int level; int type; struct kobject kobj; }; struct cpu_cache_info { struct cache_info *cache_leaves; int num_cache_leaves; struct kobject kobj; }; static struct cpu_cache_info all_cpu_cache_info[NR_CPUS]; #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) #ifdef CONFIG_SMP static void cache_shared_cpu_map_setup( unsigned int cpu, struct cache_info * this_leaf) { pal_cache_shared_info_t csi; int num_shared, i = 0; unsigned int j; if (cpu_data(cpu)->threads_per_core <= 1 && cpu_data(cpu)->cores_per_socket <= 1) { cpu_set(cpu, this_leaf->shared_cpu_map); return; } if (ia64_pal_cache_shared_info(this_leaf->level, this_leaf->type, 0, &csi) != PAL_STATUS_SUCCESS) return; num_shared = (int) csi.num_shared; do { for_each_possible_cpu(j) if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id && cpu_data(j)->core_id == csi.log1_cid && cpu_data(j)->thread_id == csi.log1_tid) cpu_set(j, this_leaf->shared_cpu_map); i++; } while (i < num_shared && ia64_pal_cache_shared_info(this_leaf->level, this_leaf->type, i, &csi) == PAL_STATUS_SUCCESS); } #else static void cache_shared_cpu_map_setup(unsigned int cpu, struct cache_info * this_leaf) { cpu_set(cpu, this_leaf->shared_cpu_map); return; } #endif static ssize_t show_coherency_line_size(struct cache_info *this_leaf, char *buf) { return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); } static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, char *buf) { return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); } static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) { return sprintf(buf, "%s\n", cache_mattrib[this_leaf->cci.pcci_cache_attr]); } static ssize_t show_size(struct cache_info *this_leaf, char *buf) { return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); } static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) { unsigned number_of_sets = this_leaf->cci.pcci_cache_size; number_of_sets /= this_leaf->cci.pcci_assoc; number_of_sets /= 1 << this_leaf->cci.pcci_line_size; return sprintf(buf, "%u\n", number_of_sets); } static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) { ssize_t len; cpumask_t shared_cpu_map; cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map); len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map); len += sprintf(buf+len, "\n"); return len; } static ssize_t show_type(struct cache_info *this_leaf, char *buf) { int type = this_leaf->type + this_leaf->cci.pcci_unified; return sprintf(buf, "%s\n", cache_types[type]); } static ssize_t show_level(struct cache_info *this_leaf, char *buf) { return sprintf(buf, "%u\n", this_leaf->level); } struct cache_attr { struct attribute attr; ssize_t (*show)(struct cache_info *, char *); ssize_t (*store)(struct cache_info *, const char *, size_t count); }; #ifdef define_one_ro #undef define_one_ro #endif #define define_one_ro(_name) \ static struct cache_attr _name = \ __ATTR(_name, 0444, show_##_name, NULL) define_one_ro(level); define_one_ro(type); define_one_ro(coherency_line_size); define_one_ro(ways_of_associativity); define_one_ro(size); define_one_ro(number_of_sets); define_one_ro(shared_cpu_map); define_one_ro(attributes); static struct attribute * cache_default_attrs[] = { &type.attr, &level.attr, &coherency_line_size.attr, &ways_of_associativity.attr, &attributes.attr, &size.attr, &number_of_sets.attr, &shared_cpu_map.attr, NULL }; #define to_object(k) container_of(k, struct cache_info, kobj) #define to_attr(a) container_of(a, struct cache_attr, attr) static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf) { struct cache_attr *fattr = to_attr(attr); struct cache_info *this_leaf = to_object(kobj); ssize_t ret; ret = fattr->show ? fattr->show(this_leaf, buf) : 0; return ret; } static struct sysfs_ops cache_sysfs_ops = { .show = cache_show }; static struct kobj_type cache_ktype = { .sysfs_ops = &cache_sysfs_ops, .default_attrs = cache_default_attrs, }; static struct kobj_type cache_ktype_percpu_entry = { .sysfs_ops = &cache_sysfs_ops, }; static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu) { kfree(all_cpu_cache_info[cpu].cache_leaves); all_cpu_cache_info[cpu].cache_leaves = NULL; all_cpu_cache_info[cpu].num_cache_leaves = 0; memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); return; } static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu) { u64 i, levels, unique_caches; pal_cache_config_info_t cci; int j; s64 status; struct cache_info *this_cache; int num_cache_leaves = 0; if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); return -1; } this_cache=kzalloc(sizeof(struct cache_info)*unique_caches, GFP_KERNEL); if (this_cache == NULL) return -ENOMEM; for (i=0; i < levels; i++) { for (j=2; j >0 ; j--) { if ((status=ia64_pal_cache_config_info(i,j, &cci)) != PAL_STATUS_SUCCESS) continue; this_cache[num_cache_leaves].cci = cci; this_cache[num_cache_leaves].level = i + 1; this_cache[num_cache_leaves].type = j; cache_shared_cpu_map_setup(cpu, &this_cache[num_cache_leaves]); num_cache_leaves ++; } } all_cpu_cache_info[cpu].cache_leaves = this_cache; all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); return 0; } /* Add cache interface for CPU device */ static int __cpuinit cache_add_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i, j; struct cache_info *this_object; int retval = 0; cpumask_t oldmask; if (all_cpu_cache_info[cpu].kobj.parent) return 0; oldmask = current->cpus_allowed; retval = set_cpus_allowed(current, cpumask_of_cpu(cpu)); if (unlikely(retval)) return retval; retval = cpu_cache_sysfs_init(cpu); set_cpus_allowed(current, oldmask); if (unlikely(retval < 0)) return retval; all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj; kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache"); all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry; retval = kobject_register(&all_cpu_cache_info[cpu].kobj); for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { this_object = LEAF_KOBJECT_PTR(cpu,i); this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj; kobject_set_name(&(this_object->kobj), "index%1lu", i); this_object->kobj.ktype = &cache_ktype; retval = kobject_register(&(this_object->kobj)); if (unlikely(retval)) { for (j = 0; j < i; j++) { kobject_unregister( &(LEAF_KOBJECT_PTR(cpu,j)->kobj)); } kobject_unregister(&all_cpu_cache_info[cpu].kobj); cpu_cache_sysfs_exit(cpu); break; } } return retval; } /* Remove cache interface for CPU device */ static int __cpuinit cache_remove_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i; for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); if (all_cpu_cache_info[cpu].kobj.parent) { kobject_unregister(&all_cpu_cache_info[cpu].kobj); memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); } cpu_cache_sysfs_exit(cpu); return 0; } /* * When a cpu is hot-plugged, do a check and initiate * cache kobject if necessary */ static int __cpuinit cache_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct sys_device *sys_dev; sys_dev = get_cpu_sysdev(cpu); switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: cache_add_dev(sys_dev); break; case CPU_DEAD: case CPU_DEAD_FROZEN: cache_remove_dev(sys_dev); break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata cache_cpu_notifier = { .notifier_call = cache_cpu_callback }; static int __cpuinit cache_sysfs_init(void) { int i; for_each_online_cpu(i) { cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE, (void *)(long)i); } register_hotcpu_notifier(&cache_cpu_notifier); return 0; } device_initcall(cache_sysfs_init);