/* * Some of the code in this file has been gleaned from the 64 bit * discontigmem support code base. * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to Pat Gaughen */ #include #include #include #include #include #include #include #include /* * proximity macros and definitions */ #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */ #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */ #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit)) #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit))) /* bitmap length; _PXM is at most 255 */ #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8) static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */ #define MAX_CHUNKS_PER_NODE 3 #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES) struct node_memory_chunk_s { unsigned long start_pfn; unsigned long end_pfn; u8 pxm; // proximity domain of node u8 nid; // which cnode contains this chunk? u8 bank; // which mem bank on this node }; static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS]; static int num_memory_chunks; /* total number of memory chunks */ static u8 __initdata apicid_to_pxm[MAX_APICID]; extern void * boot_ioremap(unsigned long, unsigned long); /* Identify CPU proximity domains */ static void __init parse_cpu_affinity_structure(char *p) { struct acpi_srat_cpu_affinity *cpu_affinity = (struct acpi_srat_cpu_affinity *) p; if ((cpu_affinity->flags & ACPI_SRAT_CPU_ENABLED) == 0) return; /* empty entry */ /* mark this node as "seen" in node bitmap */ BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain_lo); apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo; printk("CPU 0x%02X in proximity domain 0x%02X\n", cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo); } /* * Identify memory proximity domains and hot-remove capabilities. * Fill node memory chunk list structure. */ static void __init parse_memory_affinity_structure (char *sratp) { unsigned long long paddr, size; unsigned long start_pfn, end_pfn; u8 pxm; struct node_memory_chunk_s *p, *q, *pend; struct acpi_srat_mem_affinity *memory_affinity = (struct acpi_srat_mem_affinity *) sratp; if ((memory_affinity->flags & ACPI_SRAT_MEM_ENABLED) == 0) return; /* empty entry */ pxm = memory_affinity->proximity_domain & 0xff; /* mark this node as "seen" in node bitmap */ BMAP_SET(pxm_bitmap, pxm); /* calculate info for memory chunk structure */ paddr = memory_affinity->base_address; size = memory_affinity->length; start_pfn = paddr >> PAGE_SHIFT; end_pfn = (paddr + size) >> PAGE_SHIFT; if (num_memory_chunks >= MAXCHUNKS) { printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n", size/(1024*1024), paddr); return; } /* Insertion sort based on base address */ pend = &node_memory_chunk[num_memory_chunks]; for (p = &node_memory_chunk[0]; p < pend; p++) { if (start_pfn < p->start_pfn) break; } if (p < pend) { for (q = pend; q >= p; q--) *(q + 1) = *q; } p->start_pfn = start_pfn; p->end_pfn = end_pfn; p->pxm = pxm; num_memory_chunks++; printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n", start_pfn, end_pfn, memory_affinity->memory_type, pxm, ((memory_affinity->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ? "enabled and removable" : "enabled" ) ); } /* * The SRAT table always lists ascending addresses, so can always * assume that the first "start" address that you see is the real * start of the node, and that the current "end" address is after * the previous one. */ static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk) { /* * Only add present memory as told by the e820. * There is no guarantee from the SRAT that the memory it * enumerates is present at boot time because it represents * *possible* memory hotplug areas the same as normal RAM. */ if (memory_chunk->start_pfn >= max_pfn) { printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n", memory_chunk->start_pfn, memory_chunk->end_pfn); return; } if (memory_chunk->nid != nid) return; if (!node_has_online_mem(nid)) node_start_pfn[nid] = memory_chunk->start_pfn; if (node_start_pfn[nid] > memory_chunk->start_pfn) node_start_pfn[nid] = memory_chunk->start_pfn; if (node_end_pfn[nid] < memory_chunk->end_pfn) node_end_pfn[nid] = memory_chunk->end_pfn; } /* Parse the ACPI Static Resource Affinity Table */ static int __init acpi20_parse_srat(struct acpi_table_srat *sratp) { u8 *start, *end, *p; int i, j, nid; start = (u8 *)(&(sratp->reserved) + 1); /* skip header */ p = start; end = (u8 *)sratp + sratp->header.length; memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */ memset(node_memory_chunk, 0, sizeof(node_memory_chunk)); num_memory_chunks = 0; while (p < end) { switch (*p) { case ACPI_SRAT_TYPE_CPU_AFFINITY: parse_cpu_affinity_structure(p); break; case ACPI_SRAT_TYPE_MEMORY_AFFINITY: parse_memory_affinity_structure(p); break; default: printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]); break; } p += p[1]; if (p[1] == 0) { printk("acpi20_parse_srat: Entry length value is zero;" " can't parse any further!\n"); break; } } if (num_memory_chunks == 0) { printk("could not finy any ACPI SRAT memory areas.\n"); goto out_fail; } /* Calculate total number of nodes in system from PXM bitmap and create * a set of sequential node IDs starting at zero. (ACPI doesn't seem * to specify the range of _PXM values.) */ /* * MCD - we no longer HAVE to number nodes sequentially. PXM domain * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically * 32, so we will continue numbering them in this manner until MAX_NUMNODES * approaches MAX_PXM_DOMAINS for i386. */ nodes_clear(node_online_map); for (i = 0; i < MAX_PXM_DOMAINS; i++) { if (BMAP_TEST(pxm_bitmap, i)) { int nid = acpi_map_pxm_to_node(i); node_set_online(nid); } } BUG_ON(num_online_nodes() == 0); /* set cnode id in memory chunk structure */ for (i = 0; i < num_memory_chunks; i++) node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm); printk("pxm bitmap: "); for (i = 0; i < sizeof(pxm_bitmap); i++) { printk("%02X ", pxm_bitmap[i]); } printk("\n"); printk("Number of logical nodes in system = %d\n", num_online_nodes()); printk("Number of memory chunks in system = %d\n", num_memory_chunks); for (i = 0; i < MAX_APICID; i++) apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]); for (j = 0; j < num_memory_chunks; j++){ struct node_memory_chunk_s * chunk = &node_memory_chunk[j]; printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n", j, chunk->nid, chunk->start_pfn, chunk->end_pfn); node_read_chunk(chunk->nid, chunk); add_active_range(chunk->nid, chunk->start_pfn, chunk->end_pfn); } for_each_online_node(nid) { unsigned long start = node_start_pfn[nid]; unsigned long end = node_end_pfn[nid]; memory_present(nid, start, end); node_remap_size[nid] = node_memmap_size_bytes(nid, start, end); } return 1; out_fail: return 0; } struct acpi_static_rsdt { struct acpi_table_rsdt table; u32 padding[7]; /* Allow for 7 more table entries */ }; int __init get_memcfg_from_srat(void) { struct acpi_table_header *header = NULL; struct acpi_table_rsdp *rsdp = NULL; struct acpi_table_rsdt *rsdt = NULL; acpi_native_uint rsdp_address = 0; struct acpi_static_rsdt saved_rsdt; int tables = 0; int i = 0; rsdp_address = acpi_find_rsdp(); if (!rsdp_address) { printk("%s: System description tables not found\n", __FUNCTION__); goto out_err; } printk("%s: assigning address to rsdp\n", __FUNCTION__); rsdp = (struct acpi_table_rsdp *)(u32)rsdp_address; if (!rsdp) { printk("%s: Didn't find ACPI root!\n", __FUNCTION__); goto out_err; } printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision, rsdp->oem_id); if (strncmp(rsdp->signature, ACPI_SIG_RSDP,strlen(ACPI_SIG_RSDP))) { printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__); goto out_err; } rsdt = (struct acpi_table_rsdt *) boot_ioremap(rsdp->rsdt_physical_address, sizeof(struct acpi_table_rsdt)); if (!rsdt) { printk(KERN_WARNING "%s: ACPI: Invalid root system description tables (RSDT)\n", __FUNCTION__); goto out_err; } header = &rsdt->header; if (strncmp(header->signature, ACPI_SIG_RSDT, strlen(ACPI_SIG_RSDT))) { printk(KERN_WARNING "ACPI: RSDT signature incorrect\n"); goto out_err; } /* * The number of tables is computed by taking the * size of all entries (header size minus total * size of RSDT) divided by the size of each entry * (4-byte table pointers). */ tables = (header->length - sizeof(struct acpi_table_header)) / 4; if (!tables) goto out_err; memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt)); if (saved_rsdt.table.header.length > sizeof(saved_rsdt)) { printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n", saved_rsdt.table.header.length); goto out_err; } printk("Begin SRAT table scan....\n"); for (i = 0; i < tables; i++) { /* Map in header, then map in full table length. */ header = (struct acpi_table_header *) boot_ioremap(saved_rsdt.table.table_offset_entry[i], sizeof(struct acpi_table_header)); if (!header) break; header = (struct acpi_table_header *) boot_ioremap(saved_rsdt.table.table_offset_entry[i], header->length); if (!header) break; if (strncmp((char *) &header->signature, ACPI_SIG_SRAT, 4)) continue; /* we've found the srat table. don't need to look at any more tables */ return acpi20_parse_srat((struct acpi_table_srat *)header); } out_err: remove_all_active_ranges(); printk("failed to get NUMA memory information from SRAT table\n"); return 0; }