/* * linux/arch/cris/arch-v32/kernel/time.c * * Copyright (C) 2003-2007 Axis Communications AB * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CRIS_MACH_ARTPEC3 #include #endif /* Watchdog defines */ #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */ #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */ /* Number of 763 counts before watchdog bites */ #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1) unsigned long timer_regs[NR_CPUS] = { regi_timer0, #ifdef CONFIG_SMP regi_timer2 #endif }; extern void update_xtime_from_cmos(void); extern int set_rtc_mmss(unsigned long nowtime); extern int have_rtc; #ifdef CONFIG_CPU_FREQ static int cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, void *data); static struct notifier_block cris_time_freq_notifier_block = { .notifier_call = cris_time_freq_notifier, }; #endif unsigned long get_ns_in_jiffie(void) { reg_timer_r_tmr0_data data; unsigned long ns; data = REG_RD(timer, regi_timer0, r_tmr0_data); ns = (TIMER0_DIV - data) * 10; return ns; } unsigned long do_slow_gettimeoffset(void) { unsigned long count; unsigned long usec_count = 0; /* For the first call after boot */ static unsigned long count_p = TIMER0_DIV; static unsigned long jiffies_p = 0; /* Cache volatile jiffies temporarily; we have IRQs turned off. */ unsigned long jiffies_t; /* The timer interrupt comes from Etrax timer 0. In order to get * better precision, we check the current value. It might have * underflowed already though. */ count = REG_RD(timer, regi_timer0, r_tmr0_data); jiffies_t = jiffies; /* Avoiding timer inconsistencies (they are rare, but they happen) * There is one problem that must be avoided here: * 1. the timer counter underflows */ if( jiffies_t == jiffies_p ) { if( count > count_p ) { /* Timer wrapped, use new count and prescale. * Increase the time corresponding to one jiffy. */ usec_count = 1000000/HZ; } } else jiffies_p = jiffies_t; count_p = count; /* Convert timer value to usec */ /* 100 MHz timer, divide by 100 to get usec */ usec_count += (TIMER0_DIV - count) / 100; return usec_count; } /* From timer MDS describing the hardware watchdog: * 4.3.1 Watchdog Operation * The watchdog timer is an 8-bit timer with a configurable start value. * Once started the watchdog counts downwards with a frequency of 763 Hz * (100/131072 MHz). When the watchdog counts down to 1, it generates an * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the * chip. */ /* This gives us 1.3 ms to do something useful when the NMI comes */ /* Right now, starting the watchdog is the same as resetting it */ #define start_watchdog reset_watchdog #if defined(CONFIG_ETRAX_WATCHDOG) static short int watchdog_key = 42; /* arbitrary 7 bit number */ #endif /* Number of pages to consider "out of memory". It is normal that the memory * is used though, so set this really low. */ #define WATCHDOG_MIN_FREE_PAGES 8 void reset_watchdog(void) { #if defined(CONFIG_ETRAX_WATCHDOG) reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; /* Only keep watchdog happy as long as we have memory left! */ if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { /* Reset the watchdog with the inverse of the old key */ /* Invert key, which is 7 bits */ watchdog_key ^= ETRAX_WD_KEY_MASK; wd_ctrl.cnt = ETRAX_WD_CNT; wd_ctrl.cmd = regk_timer_start; wd_ctrl.key = watchdog_key; REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); } #endif } /* stop the watchdog - we still need the correct key */ void stop_watchdog(void) { #if defined(CONFIG_ETRAX_WATCHDOG) reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */ wd_ctrl.cnt = ETRAX_WD_CNT; wd_ctrl.cmd = regk_timer_stop; wd_ctrl.key = watchdog_key; REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); #endif } extern void show_registers(struct pt_regs *regs); void handle_watchdog_bite(struct pt_regs* regs) { #if defined(CONFIG_ETRAX_WATCHDOG) extern int cause_of_death; oops_in_progress = 1; printk(KERN_WARNING "Watchdog bite\n"); /* Check if forced restart or unexpected watchdog */ if (cause_of_death == 0xbedead) { #ifdef CONFIG_CRIS_MACH_ARTPEC3 /* There is a bug in Artpec-3 (voodoo TR 78) that requires * us to go to lower frequency for the reset to be reliable */ reg_clkgen_rw_clk_ctrl ctrl = REG_RD(clkgen, regi_clkgen, rw_clk_ctrl); ctrl.pll = 0; REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl); #endif while(1); } /* Unexpected watchdog, stop the watchdog and dump registers. */ stop_watchdog(); printk(KERN_WARNING "Oops: bitten by watchdog\n"); show_registers(regs); oops_in_progress = 0; #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY reset_watchdog(); #endif while(1) /* nothing */; #endif } /* Last time the cmos clock got updated. */ static long last_rtc_update = 0; /* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick. */ extern void cris_do_profile(struct pt_regs *regs); static inline irqreturn_t timer_interrupt(int irq, void *dev_id) { struct pt_regs *regs = get_irq_regs(); int cpu = smp_processor_id(); reg_timer_r_masked_intr masked_intr; reg_timer_rw_ack_intr ack_intr = { 0 }; /* Check if the timer interrupt is for us (a tmr0 int) */ masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr); if (!masked_intr.tmr0) return IRQ_NONE; /* Acknowledge the timer irq. */ ack_intr.tmr0 = 1; REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr); /* Reset watchdog otherwise it resets us! */ reset_watchdog(); /* Update statistics. */ update_process_times(user_mode(regs)); cris_do_profile(regs); /* Save profiling information */ /* The master CPU is responsible for the time keeping. */ if (cpu != 0) return IRQ_HANDLED; /* Call the real timer interrupt handler */ do_timer(1); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. * * The division here is not time critical since it will run once in * 11 minutes */ if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 && (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* Do it again in 60 s */ last_rtc_update = xtime.tv_sec - 600; } return IRQ_HANDLED; } /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. * It needs to be IRQF_DISABLED to make the jiffies update work properly. */ static struct irqaction irq_timer = { .handler = timer_interrupt, .flags = IRQF_SHARED | IRQF_DISABLED, .name = "timer" }; void __init cris_timer_init(void) { int cpu = smp_processor_id(); reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 }; reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV; reg_timer_rw_intr_mask timer_intr_mask; /* Setup the etrax timers. * Base frequency is 100MHz, divider 1000000 -> 100 HZ * We use timer0, so timer1 is free. * The trig timer is used by the fasttimer API if enabled. */ tmr0_ctrl.op = regk_timer_ld; tmr0_ctrl.freq = regk_timer_f100; REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div); REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */ tmr0_ctrl.op = regk_timer_run; REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */ /* Enable the timer irq. */ timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask); timer_intr_mask.tmr0 = 1; REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask); } void __init time_init(void) { reg_intr_vect_rw_mask intr_mask; /* Probe for the RTC and read it if it exists. * Before the RTC can be probed the loops_per_usec variable needs * to be initialized to make usleep work. A better value for * loops_per_usec is calculated by the kernel later once the * clock has started. */ loops_per_usec = 50; if(RTC_INIT() < 0) { /* No RTC, start at 1980 */ xtime.tv_sec = 0; xtime.tv_nsec = 0; have_rtc = 0; } else { /* Get the current time */ have_rtc = 1; update_xtime_from_cmos(); } /* * Initialize wall_to_monotonic such that adding it to * xtime will yield zero, the tv_nsec field must be normalized * (i.e., 0 <= nsec < NSEC_PER_SEC). */ set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); /* Start CPU local timer. */ cris_timer_init(); /* Enable the timer irq in global config. */ intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1); intr_mask.timer0 = 1; REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask); /* Now actually register the timer irq handler that calls * timer_interrupt(). */ setup_irq(TIMER0_INTR_VECT, &irq_timer); /* Enable watchdog if we should use one. */ #if defined(CONFIG_ETRAX_WATCHDOG) printk(KERN_INFO "Enabling watchdog...\n"); start_watchdog(); /* If we use the hardware watchdog, we want to trap it as an NMI * and dump registers before it resets us. For this to happen, we * must set the "m" NMI enable flag (which once set, is unset only * when an NMI is taken). */ { unsigned long flags; local_save_flags(flags); flags |= (1<<30); /* NMI M flag is at bit 30 */ local_irq_restore(flags); } #endif #ifdef CONFIG_CPU_FREQ cpufreq_register_notifier(&cris_time_freq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); #endif } #ifdef CONFIG_CPU_FREQ static int cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freqs = data; if (val == CPUFREQ_POSTCHANGE) { reg_timer_r_tmr0_data data; reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ; do { data = REG_RD(timer, timer_regs[freqs->cpu], r_tmr0_data); } while (data > 20); REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div); } return 0; } #endif