/* * File: arch/blackfin/mach-common/ints-priority-sc.c * Based on: * Author: * * Created: ? * Description: Set up the interrupt priorities * * Modified: * 1996 Roman Zippel * 1999 D. Jeff Dionne * 2000-2001 Lineo, Inc. D. Jefff Dionne * 2002 Arcturus Networks Inc. MaTed * 2003 Metrowerks/Motorola * 2003 Bas Vermeulen * Copyright 2004-2007 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #ifdef CONFIG_KGDB #include #endif #include #include #include #include #ifdef BF537_FAMILY # define BF537_GENERIC_ERROR_INT_DEMUX #else # undef BF537_GENERIC_ERROR_INT_DEMUX #endif /* * NOTES: * - we have separated the physical Hardware interrupt from the * levels that the LINUX kernel sees (see the description in irq.h) * - */ unsigned long irq_flags = 0; /* The number of spurious interrupts */ atomic_t num_spurious; struct ivgx { /* irq number for request_irq, available in mach-bf533/irq.h */ unsigned int irqno; /* corresponding bit in the SIC_ISR register */ unsigned int isrflag; } ivg_table[NR_PERI_INTS]; struct ivg_slice { /* position of first irq in ivg_table for given ivg */ struct ivgx *ifirst; struct ivgx *istop; } ivg7_13[IVG13 - IVG7 + 1]; static void search_IAR(void); /* * Search SIC_IAR and fill tables with the irqvalues * and their positions in the SIC_ISR register. */ static void __init search_IAR(void) { unsigned ivg, irq_pos = 0; for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) { int irqn; ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos]; for (irqn = 0; irqn < NR_PERI_INTS; irqn++) { int iar_shift = (irqn & 7) * 4; if (ivg == (0xf & bfin_read32((unsigned long *) SIC_IAR0 + (irqn >> 3)) >> iar_shift)) { ivg_table[irq_pos].irqno = IVG7 + irqn; ivg_table[irq_pos].isrflag = 1 << (irqn % 32); ivg7_13[ivg].istop++; irq_pos++; } } } } /* * This is for BF533 internal IRQs */ static void ack_noop(unsigned int irq) { /* Dummy function. */ } static void bfin_core_mask_irq(unsigned int irq) { irq_flags &= ~(1 << irq); if (!irqs_disabled()) local_irq_enable(); } static void bfin_core_unmask_irq(unsigned int irq) { irq_flags |= 1 << irq; /* * If interrupts are enabled, IMASK must contain the same value * as irq_flags. Make sure that invariant holds. If interrupts * are currently disabled we need not do anything; one of the * callers will take care of setting IMASK to the proper value * when reenabling interrupts. * local_irq_enable just does "STI irq_flags", so it's exactly * what we need. */ if (!irqs_disabled()) local_irq_enable(); return; } static void bfin_internal_mask_irq(unsigned int irq) { #ifndef CONFIG_BF54x bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() & ~(1 << (irq - (IRQ_CORETMR + 1)))); #else unsigned mask_bank, mask_bit; mask_bank = (irq - (IRQ_CORETMR +1))/32; mask_bit = (irq - (IRQ_CORETMR + 1))%32; bfin_write_SIC_IMASK( mask_bank, bfin_read_SIC_IMASK(mask_bank) & \ ~(1 << mask_bit)); #endif SSYNC(); } static void bfin_internal_unmask_irq(unsigned int irq) { #ifndef CONFIG_BF54x bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() | (1 << (irq - (IRQ_CORETMR + 1)))); #else unsigned mask_bank, mask_bit; mask_bank = (irq - (IRQ_CORETMR +1))/32; mask_bit = (irq - (IRQ_CORETMR + 1))%32; bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) | \ ( 1 << mask_bit)); #endif SSYNC(); } static struct irq_chip bfin_core_irqchip = { .ack = ack_noop, .mask = bfin_core_mask_irq, .unmask = bfin_core_unmask_irq, }; static struct irq_chip bfin_internal_irqchip = { .ack = ack_noop, .mask = bfin_internal_mask_irq, .unmask = bfin_internal_unmask_irq, }; #ifdef BF537_GENERIC_ERROR_INT_DEMUX static int error_int_mask; static void bfin_generic_error_ack_irq(unsigned int irq) { } static void bfin_generic_error_mask_irq(unsigned int irq) { error_int_mask &= ~(1L << (irq - IRQ_PPI_ERROR)); if (!error_int_mask) { local_irq_disable(); bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() & ~(1 << (IRQ_GENERIC_ERROR - (IRQ_CORETMR + 1)))); SSYNC(); local_irq_enable(); } } static void bfin_generic_error_unmask_irq(unsigned int irq) { local_irq_disable(); bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() | 1 << (IRQ_GENERIC_ERROR - (IRQ_CORETMR + 1))); SSYNC(); local_irq_enable(); error_int_mask |= 1L << (irq - IRQ_PPI_ERROR); } static struct irq_chip bfin_generic_error_irqchip = { .ack = bfin_generic_error_ack_irq, .mask = bfin_generic_error_mask_irq, .unmask = bfin_generic_error_unmask_irq, }; static void bfin_demux_error_irq(unsigned int int_err_irq, struct irq_desc *intb_desc) { int irq = 0; SSYNC(); #if (defined(CONFIG_BF537) || defined(CONFIG_BF536)) if (bfin_read_EMAC_SYSTAT() & EMAC_ERR_MASK) irq = IRQ_MAC_ERROR; else #endif if (bfin_read_SPORT0_STAT() & SPORT_ERR_MASK) irq = IRQ_SPORT0_ERROR; else if (bfin_read_SPORT1_STAT() & SPORT_ERR_MASK) irq = IRQ_SPORT1_ERROR; else if (bfin_read_PPI_STATUS() & PPI_ERR_MASK) irq = IRQ_PPI_ERROR; else if (bfin_read_CAN_GIF() & CAN_ERR_MASK) irq = IRQ_CAN_ERROR; else if (bfin_read_SPI_STAT() & SPI_ERR_MASK) irq = IRQ_SPI_ERROR; else if ((bfin_read_UART0_IIR() & UART_ERR_MASK_STAT1) && (bfin_read_UART0_IIR() & UART_ERR_MASK_STAT0)) irq = IRQ_UART0_ERROR; else if ((bfin_read_UART1_IIR() & UART_ERR_MASK_STAT1) && (bfin_read_UART1_IIR() & UART_ERR_MASK_STAT0)) irq = IRQ_UART1_ERROR; if (irq) { if (error_int_mask & (1L << (irq - IRQ_PPI_ERROR))) { struct irq_desc *desc = irq_desc + irq; desc->handle_irq(irq, desc); } else { switch (irq) { case IRQ_PPI_ERROR: bfin_write_PPI_STATUS(PPI_ERR_MASK); break; #if (defined(CONFIG_BF537) || defined(CONFIG_BF536)) case IRQ_MAC_ERROR: bfin_write_EMAC_SYSTAT(EMAC_ERR_MASK); break; #endif case IRQ_SPORT0_ERROR: bfin_write_SPORT0_STAT(SPORT_ERR_MASK); break; case IRQ_SPORT1_ERROR: bfin_write_SPORT1_STAT(SPORT_ERR_MASK); break; case IRQ_CAN_ERROR: bfin_write_CAN_GIS(CAN_ERR_MASK); break; case IRQ_SPI_ERROR: bfin_write_SPI_STAT(SPI_ERR_MASK); break; default: break; } pr_debug("IRQ %d:" " MASKED PERIPHERAL ERROR INTERRUPT ASSERTED\n", irq); } } else printk(KERN_ERR "%s : %s : LINE %d :\nIRQ ?: PERIPHERAL ERROR" " INTERRUPT ASSERTED BUT NO SOURCE FOUND\n", __FUNCTION__, __FILE__, __LINE__); } #endif /* BF537_GENERIC_ERROR_INT_DEMUX */ #ifdef CONFIG_IRQCHIP_DEMUX_GPIO static unsigned short gpio_enabled[gpio_bank(MAX_BLACKFIN_GPIOS)]; static unsigned short gpio_edge_triggered[gpio_bank(MAX_BLACKFIN_GPIOS)]; static void bfin_gpio_ack_irq(unsigned int irq) { u16 gpionr = irq - IRQ_PF0; if (gpio_edge_triggered[gpio_bank(gpionr)] & gpio_bit(gpionr)) { set_gpio_data(gpionr, 0); SSYNC(); } } static void bfin_gpio_mask_ack_irq(unsigned int irq) { u16 gpionr = irq - IRQ_PF0; if (gpio_edge_triggered[gpio_bank(gpionr)] & gpio_bit(gpionr)) { set_gpio_data(gpionr, 0); SSYNC(); } set_gpio_maska(gpionr, 0); SSYNC(); } static void bfin_gpio_mask_irq(unsigned int irq) { set_gpio_maska(irq - IRQ_PF0, 0); SSYNC(); } static void bfin_gpio_unmask_irq(unsigned int irq) { set_gpio_maska(irq - IRQ_PF0, 1); SSYNC(); } static unsigned int bfin_gpio_irq_startup(unsigned int irq) { unsigned int ret; u16 gpionr = irq - IRQ_PF0; if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) { ret = gpio_request(gpionr, NULL); if (ret) return ret; } gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr); bfin_gpio_unmask_irq(irq); return ret; } static void bfin_gpio_irq_shutdown(unsigned int irq) { bfin_gpio_mask_irq(irq); gpio_free(irq - IRQ_PF0); gpio_enabled[gpio_bank(irq - IRQ_PF0)] &= ~gpio_bit(irq - IRQ_PF0); } static int bfin_gpio_irq_type(unsigned int irq, unsigned int type) { unsigned int ret; u16 gpionr = irq - IRQ_PF0; if (type == IRQ_TYPE_PROBE) { /* only probe unenabled GPIO interrupt lines */ if (gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr)) return 0; type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; } if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) { if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) { ret = gpio_request(gpionr, NULL); if (ret) return ret; } gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr); } else { gpio_enabled[gpio_bank(gpionr)] &= ~gpio_bit(gpionr); return 0; } set_gpio_dir(gpionr, 0); set_gpio_inen(gpionr, 1); if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) { gpio_edge_triggered[gpio_bank(gpionr)] |= gpio_bit(gpionr); set_gpio_edge(gpionr, 1); } else { set_gpio_edge(gpionr, 0); gpio_edge_triggered[gpio_bank(gpionr)] &= ~gpio_bit(gpionr); } if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) set_gpio_both(gpionr, 1); else set_gpio_both(gpionr, 0); if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW))) set_gpio_polar(gpionr, 1); /* low or falling edge denoted by one */ else set_gpio_polar(gpionr, 0); /* high or rising edge denoted by zero */ SSYNC(); if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) set_irq_handler(irq, handle_edge_irq); else set_irq_handler(irq, handle_level_irq); return 0; } static struct irq_chip bfin_gpio_irqchip = { .ack = bfin_gpio_ack_irq, .mask = bfin_gpio_mask_irq, .mask_ack = bfin_gpio_mask_ack_irq, .unmask = bfin_gpio_unmask_irq, .set_type = bfin_gpio_irq_type, .startup = bfin_gpio_irq_startup, .shutdown = bfin_gpio_irq_shutdown }; static void bfin_demux_gpio_irq(unsigned int intb_irq, struct irq_desc *intb_desc) { u16 i; for (i = 0; i < MAX_BLACKFIN_GPIOS; i+=16) { int irq = IRQ_PF0 + i; int flag_d = get_gpiop_data(i); int mask = flag_d & (gpio_enabled[gpio_bank(i)] & get_gpiop_maska(i)); while (mask) { if (mask & 1) { struct irq_desc *desc = irq_desc + irq; desc->handle_irq(irq, desc); } irq++; mask >>= 1; } } } #endif /* CONFIG_IRQCHIP_DEMUX_GPIO */ /* * This function should be called during kernel startup to initialize * the BFin IRQ handling routines. */ int __init init_arch_irq(void) { int irq; unsigned long ilat = 0; /* Disable all the peripheral intrs - page 4-29 HW Ref manual */ #ifdef CONFIG_BF54x bfin_write_SIC_IMASK0(SIC_UNMASK_ALL); bfin_write_SIC_IMASK1(SIC_UNMASK_ALL); bfin_write_SIC_IMASK2(SIC_UNMASK_ALL); #else bfin_write_SIC_IMASK(SIC_UNMASK_ALL); #endif SSYNC(); local_irq_disable(); #ifndef CONFIG_KGDB bfin_write_EVT0(evt_emulation); #endif bfin_write_EVT2(evt_evt2); bfin_write_EVT3(trap); bfin_write_EVT5(evt_ivhw); bfin_write_EVT6(evt_timer); bfin_write_EVT7(evt_evt7); bfin_write_EVT8(evt_evt8); bfin_write_EVT9(evt_evt9); bfin_write_EVT10(evt_evt10); bfin_write_EVT11(evt_evt11); bfin_write_EVT12(evt_evt12); bfin_write_EVT13(evt_evt13); bfin_write_EVT14(evt14_softirq); bfin_write_EVT15(evt_system_call); CSYNC(); for (irq = 0; irq < SYS_IRQS; irq++) { if (irq <= IRQ_CORETMR) set_irq_chip(irq, &bfin_core_irqchip); else set_irq_chip(irq, &bfin_internal_irqchip); #ifdef BF537_GENERIC_ERROR_INT_DEMUX if (irq != IRQ_GENERIC_ERROR) { #endif #ifdef CONFIG_IRQCHIP_DEMUX_GPIO if ((irq != IRQ_PROG_INTA) /*PORT F & G MASK_A Interrupt*/ # if defined(BF537_FAMILY) && !(defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)) && (irq != IRQ_MAC_RX) /*PORT H MASK_A Interrupt*/ # endif ) { #endif set_irq_handler(irq, handle_simple_irq); #ifdef CONFIG_IRQCHIP_DEMUX_GPIO } else { set_irq_chained_handler(irq, bfin_demux_gpio_irq); } #endif #ifdef BF537_GENERIC_ERROR_INT_DEMUX } else { set_irq_handler(irq, bfin_demux_error_irq); } #endif } #ifdef BF537_GENERIC_ERROR_INT_DEMUX for (irq = IRQ_PPI_ERROR; irq <= IRQ_UART1_ERROR; irq++) { set_irq_chip(irq, &bfin_generic_error_irqchip); set_irq_handler(irq, handle_level_irq); } #endif #ifdef CONFIG_IRQCHIP_DEMUX_GPIO for (irq = IRQ_PF0; irq < NR_IRQS; irq++) { set_irq_chip(irq, &bfin_gpio_irqchip); /* if configured as edge, then will be changed to do_edge_IRQ */ set_irq_handler(irq, handle_level_irq); } #endif bfin_write_IMASK(0); CSYNC(); ilat = bfin_read_ILAT(); CSYNC(); bfin_write_ILAT(ilat); CSYNC(); printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n"); /* IMASK=xxx is equivalent to STI xx or irq_flags=xx, * local_irq_enable() */ program_IAR(); /* Therefore it's better to setup IARs before interrupts enabled */ search_IAR(); /* Enable interrupts IVG7-15 */ irq_flags = irq_flags | IMASK_IVG15 | IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 | IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW; return 0; } #ifdef CONFIG_DO_IRQ_L1 void do_irq(int vec, struct pt_regs *fp)__attribute__((l1_text)); #endif void do_irq(int vec, struct pt_regs *fp) { if (vec == EVT_IVTMR_P) { vec = IRQ_CORETMR; } else { struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst; struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop; #ifdef CONFIG_BF54x unsigned long sic_status[3]; SSYNC(); sic_status[0] = bfin_read_SIC_ISR(0) & bfin_read_SIC_IMASK(0); sic_status[1] = bfin_read_SIC_ISR(1) & bfin_read_SIC_IMASK(1); sic_status[2] = bfin_read_SIC_ISR(2) & bfin_read_SIC_IMASK(2); SSYNC(); for(;; ivg++) { if (ivg >= ivg_stop) { atomic_inc(&num_spurious); return; } if (sic_status[(ivg->irqno - IVG7)/32] & ivg->isrflag) break; } #else unsigned long sic_status; SSYNC(); sic_status = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR(); for (;; ivg++) { if (ivg >= ivg_stop) { atomic_inc(&num_spurious); return; } else if (sic_status & ivg->isrflag) break; } #endif vec = ivg->irqno; } asm_do_IRQ(vec, fp); #ifdef CONFIG_KGDB kgdb_process_breakpoint(); #endif }