aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/feature-removal-schedule.txt9
-rw-r--r--Documentation/fujitsu/frv/kernel-ABI.txt234
-rw-r--r--Documentation/hwmon/f71805f105
-rw-r--r--Documentation/hwmon/it872
-rw-r--r--Documentation/hwmon/sysfs-interface18
-rw-r--r--Documentation/hwmon/w83627hf4
-rw-r--r--Documentation/i2c/busses/i2c-sis96x (renamed from Documentation/i2c/busses/i2c-sis69x)4
-rw-r--r--Documentation/kernel-parameters.txt2
-rw-r--r--Documentation/kprobes.txt81
-rw-r--r--Documentation/mips/AU1xxx_IDE.README6
-rw-r--r--Documentation/powerpc/booting-without-of.txt68
-rw-r--r--Documentation/spi/butterfly23
-rw-r--r--Documentation/unshare.txt295
-rw-r--r--Documentation/video4linux/CARDLIST.cx882
-rw-r--r--Documentation/video4linux/CARDLIST.saa71346
-rw-r--r--Documentation/x86_64/boot-options.txt12
16 files changed, 816 insertions, 55 deletions
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 4d4897c8ef9..b730d765b52 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -162,3 +162,12 @@ What: pci_module_init(driver)
When: January 2007
Why: Is replaced by pci_register_driver(pci_driver).
Who: Richard Knutsson <ricknu-0@student.ltu.se> and Greg Kroah-Hartman <gregkh@suse.de>
+
+---------------------------
+
+What: I2C interface of the it87 driver
+When: January 2007
+Why: The ISA interface is faster and should be always available. The I2C
+ probing is also known to cause trouble in at least one case (see
+ bug #5889.)
+Who: Jean Delvare <khali@linux-fr.org>
diff --git a/Documentation/fujitsu/frv/kernel-ABI.txt b/Documentation/fujitsu/frv/kernel-ABI.txt
new file mode 100644
index 00000000000..0ed9b0a779b
--- /dev/null
+++ b/Documentation/fujitsu/frv/kernel-ABI.txt
@@ -0,0 +1,234 @@
+ =================================
+ INTERNAL KERNEL ABI FOR FR-V ARCH
+ =================================
+
+The internal FRV kernel ABI is not quite the same as the userspace ABI. A number of the registers
+are used for special purposed, and the ABI is not consistent between modules vs core, and MMU vs
+no-MMU.
+
+This partly stems from the fact that FRV CPUs do not have a separate supervisor stack pointer, and
+most of them do not have any scratch registers, thus requiring at least one general purpose
+register to be clobbered in such an event. Also, within the kernel core, it is possible to simply
+jump or call directly between functions using a relative offset. This cannot be extended to modules
+for the displacement is likely to be too far. Thus in modules the address of a function to call
+must be calculated in a register and then used, requiring two extra instructions.
+
+This document has the following sections:
+
+ (*) System call register ABI
+ (*) CPU operating modes
+ (*) Internal kernel-mode register ABI
+ (*) Internal debug-mode register ABI
+ (*) Virtual interrupt handling
+
+
+========================
+SYSTEM CALL REGISTER ABI
+========================
+
+When a system call is made, the following registers are effective:
+
+ REGISTERS CALL RETURN
+ =============== ======================= =======================
+ GR7 System call number Preserved
+ GR8 Syscall arg #1 Return value
+ GR9-GR13 Syscall arg #2-6 Preserved
+
+
+===================
+CPU OPERATING MODES
+===================
+
+The FR-V CPU has three basic operating modes. In order of increasing capability:
+
+ (1) User mode.
+
+ Basic userspace running mode.
+
+ (2) Kernel mode.
+
+ Normal kernel mode. There are many additional control registers available that may be
+ accessed in this mode, in addition to all the stuff available to user mode. This has two
+ submodes:
+
+ (a) Exceptions enabled (PSR.T == 1).
+
+ Exceptions will invoke the appropriate normal kernel mode handler. On entry to the
+ handler, the PSR.T bit will be cleared.
+
+ (b) Exceptions disabled (PSR.T == 0).
+
+ No exceptions or interrupts may happen. Any mandatory exceptions will cause the CPU to
+ halt unless the CPU is told to jump into debug mode instead.
+
+ (3) Debug mode.
+
+ No exceptions may happen in this mode. Memory protection and management exceptions will be
+ flagged for later consideration, but the exception handler won't be invoked. Debugging traps
+ such as hardware breakpoints and watchpoints will be ignored. This mode is entered only by
+ debugging events obtained from the other two modes.
+
+ All kernel mode registers may be accessed, plus a few extra debugging specific registers.
+
+
+=================================
+INTERNAL KERNEL-MODE REGISTER ABI
+=================================
+
+There are a number of permanent register assignments that are set up by entry.S in the exception
+prologue. Note that there is a complete set of exception prologues for each of user->kernel
+transition and kernel->kernel transition. There are also user->debug and kernel->debug mode
+transition prologues.
+
+
+ REGISTER FLAVOUR USE
+ =============== ======= ====================================================
+ GR1 Supervisor stack pointer
+ GR15 Current thread info pointer
+ GR16 GP-Rel base register for small data
+ GR28 Current exception frame pointer (__frame)
+ GR29 Current task pointer (current)
+ GR30 Destroyed by kernel mode entry
+ GR31 NOMMU Destroyed by debug mode entry
+ GR31 MMU Destroyed by TLB miss kernel mode entry
+ CCR.ICC2 Virtual interrupt disablement tracking
+ CCCR.CC3 Cleared by exception prologue (atomic op emulation)
+ SCR0 MMU See mmu-layout.txt.
+ SCR1 MMU See mmu-layout.txt.
+ SCR2 MMU Save for EAR0 (destroyed by icache insns in debug mode)
+ SCR3 MMU Save for GR31 during debug exceptions
+ DAMR/IAMR NOMMU Fixed memory protection layout.
+ DAMR/IAMR MMU See mmu-layout.txt.
+
+
+Certain registers are also used or modified across function calls:
+
+ REGISTER CALL RETURN
+ =============== =============================== ===============================
+ GR0 Fixed Zero -
+ GR2 Function call frame pointer
+ GR3 Special Preserved
+ GR3-GR7 - Clobbered
+ GR8 Function call arg #1 Return value (or clobbered)
+ GR9 Function call arg #2 Return value MSW (or clobbered)
+ GR10-GR13 Function call arg #3-#6 Clobbered
+ GR14 - Clobbered
+ GR15-GR16 Special Preserved
+ GR17-GR27 - Preserved
+ GR28-GR31 Special Only accessed explicitly
+ LR Return address after CALL Clobbered
+ CCR/CCCR - Mostly Clobbered
+
+
+================================
+INTERNAL DEBUG-MODE REGISTER ABI
+================================
+
+This is the same as the kernel-mode register ABI for functions calls. The difference is that in
+debug-mode there's a different stack and a different exception frame. Almost all the global
+registers from kernel-mode (including the stack pointer) may be changed.
+
+ REGISTER FLAVOUR USE
+ =============== ======= ====================================================
+ GR1 Debug stack pointer
+ GR16 GP-Rel base register for small data
+ GR31 Current debug exception frame pointer (__debug_frame)
+ SCR3 MMU Saved value of GR31
+
+
+Note that debug mode is able to interfere with the kernel's emulated atomic ops, so it must be
+exceedingly careful not to do any that would interact with the main kernel in this regard. Hence
+the debug mode code (gdbstub) is almost completely self-contained. The only external code used is
+the sprintf family of functions.
+
+Futhermore, break.S is so complicated because single-step mode does not switch off on entry to an
+exception. That means unless manually disabled, single-stepping will blithely go on stepping into
+things like interrupts. See gdbstub.txt for more information.
+
+
+==========================
+VIRTUAL INTERRUPT HANDLING
+==========================
+
+Because accesses to the PSR is so slow, and to disable interrupts we have to access it twice (once
+to read and once to write), we don't actually disable interrupts at all if we don't have to. What
+we do instead is use the ICC2 condition code flags to note virtual disablement, such that if we
+then do take an interrupt, we note the flag, really disable interrupts, set another flag and resume
+execution at the point the interrupt happened. Setting condition flags as a side effect of an
+arithmetic or logical instruction is really fast. This use of the ICC2 only occurs within the
+kernel - it does not affect userspace.
+
+The flags we use are:
+
+ (*) CCR.ICC2.Z [Zero flag]
+
+ Set to virtually disable interrupts, clear when interrupts are virtually enabled. Can be
+ modified by logical instructions without affecting the Carry flag.
+
+ (*) CCR.ICC2.C [Carry flag]
+
+ Clear to indicate hardware interrupts are really disabled, set otherwise.
+
+
+What happens is this:
+
+ (1) Normal kernel-mode operation.
+
+ ICC2.Z is 0, ICC2.C is 1.
+
+ (2) An interrupt occurs. The exception prologue examines ICC2.Z and determines that nothing needs
+ doing. This is done simply with an unlikely BEQ instruction.
+
+ (3) The interrupts are disabled (local_irq_disable)
+
+ ICC2.Z is set to 1.
+
+ (4) If interrupts were then re-enabled (local_irq_enable):
+
+ ICC2.Z would be set to 0.
+
+ A TIHI #2 instruction (trap #2 if condition HI - Z==0 && C==0) would be used to trap if
+ interrupts were now virtually enabled, but physically disabled - which they're not, so the
+ trap isn't taken. The kernel would then be back to state (1).
+
+ (5) An interrupt occurs. The exception prologue examines ICC2.Z and determines that the interrupt
+ shouldn't actually have happened. It jumps aside, and there disabled interrupts by setting
+ PSR.PIL to 14 and then it clears ICC2.C.
+
+ (6) If interrupts were then saved and disabled again (local_irq_save):
+
+ ICC2.Z would be shifted into the save variable and masked off (giving a 1).
+
+ ICC2.Z would then be set to 1 (thus unchanged), and ICC2.C would be unaffected (ie: 0).
+
+ (7) If interrupts were then restored from state (6) (local_irq_restore):
+
+ ICC2.Z would be set to indicate the result of XOR'ing the saved value (ie: 1) with 1, which
+ gives a result of 0 - thus leaving ICC2.Z set.
+
+ ICC2.C would remain unaffected (ie: 0).
+
+ A TIHI #2 instruction would be used to again assay the current state, but this would do
+ nothing as Z==1.
+
+ (8) If interrupts were then enabled (local_irq_enable):
+
+ ICC2.Z would be cleared. ICC2.C would be left unaffected. Both flags would now be 0.
+
+ A TIHI #2 instruction again issued to assay the current state would then trap as both Z==0
+ [interrupts virtually enabled] and C==0 [interrupts really disabled] would then be true.
+
+ (9) The trap #2 handler would simply enable hardware interrupts (set PSR.PIL to 0), set ICC2.C to
+ 1 and return.
+
+(10) Immediately upon returning, the pending interrupt would be taken.
+
+(11) The interrupt handler would take the path of actually processing the interrupt (ICC2.Z is
+ clear, BEQ fails as per step (2)).
+
+(12) The interrupt handler would then set ICC2.C to 1 since hardware interrupts are definitely
+ enabled - or else the kernel wouldn't be here.
+
+(13) On return from the interrupt handler, things would be back to state (1).
+
+This trap (#2) is only available in kernel mode. In user mode it will result in SIGILL.
diff --git a/Documentation/hwmon/f71805f b/Documentation/hwmon/f71805f
new file mode 100644
index 00000000000..28c5b7d1eb9
--- /dev/null
+++ b/Documentation/hwmon/f71805f
@@ -0,0 +1,105 @@
+Kernel driver f71805f
+=====================
+
+Supported chips:
+ * Fintek F71805F/FG
+ Prefix: 'f71805f'
+ Addresses scanned: none, address read from Super I/O config space
+ Datasheet: Provided by Fintek on request
+
+Author: Jean Delvare <khali@linux-fr.org>
+
+Thanks to Denis Kieft from Barracuda Networks for the donation of a
+test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and
+for providing initial documentation.
+
+Thanks to Kris Chen from Fintek for answering technical questions and
+providing additional documentation.
+
+Thanks to Chris Lin from Jetway for providing wiring schematics and
+anwsering technical questions.
+
+
+Description
+-----------
+
+The Fintek F71805F/FG Super I/O chip includes complete hardware monitoring
+capabilities. It can monitor up to 9 voltages (counting its own power
+source), 3 fans and 3 temperature sensors.
+
+This chip also has fan controlling features, using either DC or PWM, in
+three different modes (one manual, two automatic). The driver doesn't
+support these features yet.
+
+The driver assumes that no more than one chip is present, which seems
+reasonable.
+
+
+Voltage Monitoring
+------------------
+
+Voltages are sampled by an 8-bit ADC with a LSB of 8 mV. The supported
+range is thus from 0 to 2.040 V. Voltage values outside of this range
+need external resistors. An exception is in0, which is used to monitor
+the chip's own power source (+3.3V), and is divided internally by a
+factor 2.
+
+The two LSB of the voltage limit registers are not used (always 0), so
+you can only set the limits in steps of 32 mV (before scaling).
+
+The wirings and resistor values suggested by Fintek are as follow:
+
+ pin expected
+ name use R1 R2 divider raw val.
+
+in0 VCC VCC3.3V int. int. 2.00 1.65 V
+in1 VIN1 VTT1.2V 10K - 1.00 1.20 V
+in2 VIN2 VRAM 100K 100K 2.00 ~1.25 V (1)
+in3 VIN3 VCHIPSET 47K 100K 1.47 2.24 V (2)
+in4 VIN4 VCC5V 200K 47K 5.25 0.95 V
+in5 VIN5 +12V 200K 20K 11.00 1.05 V
+in6 VIN6 VCC1.5V 10K - 1.00 1.50 V
+in7 VIN7 VCORE 10K - 1.00 ~1.40 V (1)
+in8 VIN8 VSB5V 200K 47K 1.00 0.95 V
+
+(1) Depends on your hardware setup.
+(2) Obviously not correct, swapping R1 and R2 would make more sense.
+
+These values can be used as hints at best, as motherboard manufacturers
+are free to use a completely different setup. As a matter of fact, the
+Jetway K8M8MS uses a significantly different setup. You will have to
+find out documentation about your own motherboard, and edit sensors.conf
+accordingly.
+
+Each voltage measured has associated low and high limits, each of which
+triggers an alarm when crossed.
+
+
+Fan Monitoring
+--------------
+
+Fan rotation speeds are reported as 12-bit values from a gated clock
+signal. Speeds down to 366 RPM can be measured. There is no theoretical
+high limit, but values over 6000 RPM seem to cause problem. The effective
+resolution is much lower than you would expect, the step between different
+register values being 10 rather than 1.
+
+The chip assumes 2 pulse-per-revolution fans.
+
+An alarm is triggered if the rotation speed drops below a programmable
+limit or is too low to be measured.
+
+
+Temperature Monitoring
+----------------------
+
+Temperatures are reported in degrees Celsius. Each temperature measured
+has a high limit, those crossing triggers an alarm. There is an associated
+hysteresis value, below which the temperature has to drop before the
+alarm is cleared.
+
+All temperature channels are external, there is no embedded temperature
+sensor. Each channel can be used for connecting either a thermal diode
+or a thermistor. The driver reports the currently selected mode, but
+doesn't allow changing it. In theory, the BIOS should have configured
+everything properly.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index 7f42e441c64..9555be1ed99 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -9,7 +9,7 @@ Supported chips:
http://www.ite.com.tw/
* IT8712F
Prefix: 'it8712'
- Addresses scanned: I2C 0x28 - 0x2f
+ Addresses scanned: I2C 0x2d
from Super I/O config space (8 I/O ports)
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/
diff --git a/Documentation/hwmon/sysfs-interface b/Documentation/hwmon/sysfs-interface
index 764cdc5480e..a0d0ab24288 100644
--- a/Documentation/hwmon/sysfs-interface
+++ b/Documentation/hwmon/sysfs-interface
@@ -179,11 +179,12 @@ temp[1-*]_auto_point[1-*]_temp_hyst
****************
temp[1-3]_type Sensor type selection.
- Integers 1, 2, 3 or thermistor Beta value (3435)
+ Integers 1 to 4 or thermistor Beta value (typically 3435)
Read/Write.
1: PII/Celeron Diode
2: 3904 transistor
3: thermal diode
+ 4: thermistor (default/unknown Beta)
Not all types are supported by all chips
temp[1-4]_max Temperature max value.
@@ -261,6 +262,21 @@ alarms Alarm bitmask.
of individual bits.
Bits are defined in kernel/include/sensors.h.
+alarms_in Alarm bitmask relative to in (voltage) channels
+ Read only
+ A '1' bit means an alarm, LSB corresponds to in0 and so on
+ Prefered to 'alarms' for newer chips
+
+alarms_fan Alarm bitmask relative to fan channels
+ Read only
+ A '1' bit means an alarm, LSB corresponds to fan1 and so on
+ Prefered to 'alarms' for newer chips
+
+alarms_temp Alarm bitmask relative to temp (temperature) channels
+ Read only
+ A '1' bit means an alarm, LSB corresponds to temp1 and so on
+ Prefered to 'alarms' for newer chips
+
beep_enable Beep/interrupt enable
0 to disable.
1 to enable.
diff --git a/Documentation/hwmon/w83627hf b/Documentation/hwmon/w83627hf
index 5d23776e990..bbeaba68044 100644
--- a/Documentation/hwmon/w83627hf
+++ b/Documentation/hwmon/w83627hf
@@ -36,6 +36,10 @@ Module Parameters
(default is 1)
Use 'init=0' to bypass initializing the chip.
Try this if your computer crashes when you load the module.
+* reset: int
+ (default is 0)
+ The driver used to reset the chip on load, but does no more. Use
+ 'reset=1' to restore the old behavior. Report if you need to do this.
Description
-----------
diff --git a/Documentation/i2c/busses/i2c-sis69x b/Documentation/i2c/busses/i2c-sis96x
index b88953dfd58..00a009b977e 100644
--- a/Documentation/i2c/busses/i2c-sis69x
+++ b/Documentation/i2c/busses/i2c-sis96x
@@ -7,7 +7,7 @@ Supported adapters:
Any combination of these host bridges:
645, 645DX (aka 646), 648, 650, 651, 655, 735, 745, 746
and these south bridges:
- 961, 962, 963(L)
+ 961, 962, 963(L)
Author: Mark M. Hoffman <mhoffman@lightlink.com>
@@ -29,7 +29,7 @@ The command "lspci" as root should produce something like these lines:
or perhaps this...
-00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
+00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
00:02.0 ISA bridge: Silicon Integrated Systems [SiS]: Unknown device 0961
00:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 84370363da8..ac75b57edf2 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -1133,6 +1133,8 @@ running once the system is up.
Mechanism 1.
conf2 [IA-32] Force use of PCI Configuration
Mechanism 2.
+ nommconf [IA-32,X86_64] Disable use of MMCONFIG for PCI
+ Configuration
nosort [IA-32] Don't sort PCI devices according to
order given by the PCI BIOS. This sorting is
done to get a device order compatible with
diff --git a/Documentation/kprobes.txt b/Documentation/kprobes.txt
index 0ea5a0c6e82..2c3b1eae428 100644
--- a/Documentation/kprobes.txt
+++ b/Documentation/kprobes.txt
@@ -136,17 +136,20 @@ Kprobes, jprobes, and return probes are implemented on the following
architectures:
- i386
-- x86_64 (AMD-64, E64MT)
+- x86_64 (AMD-64, EM64T)
- ppc64
-- ia64 (Support for probes on certain instruction types is still in progress.)
+- ia64 (Does not support probes on instruction slot1.)
- sparc64 (Return probes not yet implemented.)
3. Configuring Kprobes
When configuring the kernel using make menuconfig/xconfig/oldconfig,
-ensure that CONFIG_KPROBES is set to "y". Under "Kernel hacking",
-look for "Kprobes". You may have to enable "Kernel debugging"
-(CONFIG_DEBUG_KERNEL) before you can enable Kprobes.
+ensure that CONFIG_KPROBES is set to "y". Under "Instrumentation
+Support", look for "Kprobes".
+
+So that you can load and unload Kprobes-based instrumentation modules,
+make sure "Loadable module support" (CONFIG_MODULES) and "Module
+unloading" (CONFIG_MODULE_UNLOAD) are set to "y".
You may also want to ensure that CONFIG_KALLSYMS and perhaps even
CONFIG_KALLSYMS_ALL are set to "y", since kallsyms_lookup_name()
@@ -262,18 +265,18 @@ at any time after the probe has been registered.
5. Kprobes Features and Limitations
-As of Linux v2.6.12, Kprobes allows multiple probes at the same
-address. Currently, however, there cannot be multiple jprobes on
-the same function at the same time.
+Kprobes allows multiple probes at the same address. Currently,
+however, there cannot be multiple jprobes on the same function at
+the same time.
In general, you can install a probe anywhere in the kernel.
In particular, you can probe interrupt handlers. Known exceptions
are discussed in this section.
-For obvious reasons, it's a bad idea to install a probe in
-the code that implements Kprobes (mostly kernel/kprobes.c and
-arch/*/kernel/kprobes.c). A patch in the v2.6.13 timeframe instructs
-Kprobes to reject such requests.
+The register_*probe functions will return -EINVAL if you attempt
+to install a probe in the code that implements Kprobes (mostly
+kernel/kprobes.c and arch/*/kernel/kprobes.c, but also functions such
+as do_page_fault and notifier_call_chain).
If you install a probe in an inline-able function, Kprobes makes
no attempt to chase down all inline instances of the function and
@@ -290,18 +293,14 @@ from the accidental ones. Don't drink and probe.
Kprobes makes no attempt to prevent probe handlers from stepping on
each other -- e.g., probing printk() and then calling printk() from a
-probe handler. As of Linux v2.6.12, if a probe handler hits a probe,
-that second probe's handlers won't be run in that instance.
-
-In Linux v2.6.12 and previous versions, Kprobes' data structures are
-protected by a single lock that is held during probe registration and
-unregistration and while handlers are run. Thus, no two handlers
-can run simultaneously. To improve scalability on SMP systems,
-this restriction will probably be removed soon, in which case
-multiple handlers (or multiple instances of the same handler) may
-run concurrently on different CPUs. Code your handlers accordingly.
-
-Kprobes does not use semaphores or allocate memory except during
+probe handler. If a probe handler hits a probe, that second probe's
+handlers won't be run in that instance, and the kprobe.nmissed member
+of the second probe will be incremented.
+
+As of Linux v2.6.15-rc1, multiple handlers (or multiple instances of
+the same handler) may run concurrently on different CPUs.
+
+Kprobes does not use mutexes or allocate memory except during
registration and unregistration.
Probe handlers are run with preemption disabled. Depending on the
@@ -316,11 +315,18 @@ address instead of the real return address for kretprobed functions.
(As far as we can tell, __builtin_return_address() is used only
for instrumentation and error reporting.)
-If the number of times a function is called does not match the
-number of times it returns, registering a return probe on that
-function may produce undesirable results. We have the do_exit()
-and do_execve() cases covered. do_fork() is not an issue. We're
-unaware of other specific cases where this could be a problem.
+If the number of times a function is called does not match the number
+of times it returns, registering a return probe on that function may
+produce undesirable results. We have the do_exit() case covered.
+do_execve() and do_fork() are not an issue. We're unaware of other
+specific cases where this could be a problem.
+
+If, upon entry to or exit from a function, the CPU is running on
+a stack other than that of the current task, registering a return
+probe on that function may produce undesirable results. For this
+reason, Kprobes doesn't support return probes (or kprobes or jprobes)
+on the x86_64 version of __switch_to(); the registration functions
+return -EINVAL.
6. Probe Overhead
@@ -347,14 +353,12 @@ k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
7. TODO
-a. SystemTap (http://sourceware.org/systemtap): Work in progress
-to provide a simplified programming interface for probe-based
-instrumentation.
-b. Improved SMP scalability: Currently, work is in progress to handle
-multiple kprobes in parallel.
-c. Kernel return probes for sparc64.
-d. Support for other architectures.
-e. User-space probes.
+a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
+programming interface for probe-based instrumentation. Try it out.
+b. Kernel return probes for sparc64.
+c. Support for other architectures.
+d. User-space probes.
+e. Watchpoint probes (which fire on data references).
8. Kprobes Example
@@ -411,8 +415,7 @@ int init_module(void)
printk("Couldn't find %s to plant kprobe\n", "do_fork");
return -1;
}
- ret = register_kprobe(&kp);
- if (ret < 0) {
+ if ((ret = register_kprobe(&kp) < 0)) {
printk("register_kprobe failed, returned %d\n", ret);
return -1;
}
diff --git a/Documentation/mips/AU1xxx_IDE.README b/Documentation/mips/AU1xxx_IDE.README
index a7e4c4ea356..afb31c141d9 100644
--- a/Documentation/mips/AU1xxx_IDE.README
+++ b/Documentation/mips/AU1xxx_IDE.README
@@ -95,11 +95,13 @@ CONFIG_BLK_DEV_IDEDMA_PCI=y
CONFIG_IDEDMA_PCI_AUTO=y
CONFIG_BLK_DEV_IDE_AU1XXX=y
CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y
-CONFIG_BLK_DEV_IDE_AU1XXX_BURSTABLE_ON=y
CONFIG_BLK_DEV_IDE_AU1XXX_SEQTS_PER_RQ=128
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y
+Also define 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to enable
+the burst support on DBDMA controller.
+
If the used system need the USB support enable the following kernel configs for
high IDE to USB throughput.
@@ -115,6 +117,8 @@ CONFIG_BLK_DEV_IDE_AU1XXX_SEQTS_PER_RQ=128
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y
+Also undefine 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to
+disable the burst support on DBDMA controller.
ADD NEW HARD DISC TO WHITE OR BLACK LIST
----------------------------------------
diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt
index 1284498e847..d02c64953dc 100644
--- a/Documentation/powerpc/booting-without-of.txt
+++ b/Documentation/powerpc/booting-without-of.txt
@@ -44,7 +44,6 @@
compiler and the textural representation of
the tree that can be "compiled" by dtc.
-
November 21, 2005: Rev 0.5
- Additions/generalizations for 32-bit
- Changed to reflect the new arch/powerpc
@@ -880,6 +879,10 @@ address which can extend beyond that limit.
- device_type : Should be "soc"
- ranges : Should be defined as specified in 1) to describe the
translation of SOC addresses for memory mapped SOC registers.
+ - bus-frequency: Contains the bus frequency for the SOC node.
+ Typically, the value of this field is filled in by the boot
+ loader.
+
Recommended properties:
@@ -919,6 +922,7 @@ SOC.
device_type = "soc";
ranges = <00000000 e0000000 00100000>
reg = <e0000000 00003000>;
+ bus-frequency = <0>;
}
@@ -1170,6 +1174,8 @@ platforms are moved over to use the flattened-device-tree model.
mdio@24520 {
reg = <24520 20>;
+ device_type = "mdio";
+ compatible = "gianfar";
ethernet-phy@0 {
......
@@ -1300,6 +1306,65 @@ platforms are moved over to use the flattened-device-tree model.
};
+ f) Freescale SOC USB controllers
+
+ The device node for a USB controller that is part of a Freescale
+ SOC is as described in the document "Open Firmware Recommended
+ Practice : Universal Serial Bus" with the following modifications
+ and additions :
+
+ Required properties :
+ - compatible : Should be "fsl-usb2-mph" for multi port host usb
+ controllers, or "fsl-usb2-dr" for dual role usb controllers
+ - phy_type : For multi port host usb controllers, should be one of
+ "ulpi", or "serial". For dual role usb controllers, should be
+ one of "ulpi", "utmi", "utmi_wide", or "serial".
+ - reg : Offset and length of the register set for the device
+ - port0 : boolean; if defined, indicates port0 is connected for
+ fsl-usb2-mph compatible controllers. Either this property or
+ "port1" (or both) must be defined for "fsl-usb2-mph" compatible
+ controllers.
+ - port1 : boolean; if defined, indicates port1 is connected for
+ fsl-usb2-mph compatible controllers. Either this property or
+ "port0" (or both) must be defined for "fsl-usb2-mph" compatible
+ controllers.
+
+ Recommended properties :
+ - interrupts : <a b> where a is the interrupt number and b is a
+ field that represents an encoding of the sense and level
+ information for the interrupt. This should be encoded based on
+ the information in section 2) depending on the type of interrupt
+ controller you have.
+ - interrupt-parent : the phandle for the interrupt controller that
+ services interrupts for this device.
+
+ Example multi port host usb controller device node :
+ usb@22000 {
+ device_type = "usb";
+ compatible = "fsl-usb2-mph";
+ reg = <22000 1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ interrupt-parent = <700>;
+ interrupts = <27 1>;
+ phy_type = "ulpi";
+ port0;
+ port1;
+ };
+
+ Example dual role usb controller device node :
+ usb@23000 {
+ device_type = "usb";
+ compatible = "fsl-usb2-dr";
+ reg = <23000 1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ interrupt-parent = <700>;
+ interrupts = <26 1>;
+ phy = "ulpi";
+ };
+
+
More devices will be defined as this spec matures.
@@ -1317,6 +1382,7 @@ not necessary as they are usually the same as the root node.
device_type = "soc";
ranges = <00000000 e0000000 00100000>
reg = <e0000000 00003000>;
+ bus-frequency = <0>;
mdio@24520 {
reg = <24520 20>;
diff --git a/Documentation/spi/butterfly b/Documentation/spi/butterfly
index a2e8c8d90e3..9927af7a629 100644
--- a/Documentation/spi/butterfly
+++ b/Documentation/spi/butterfly
@@ -12,13 +12,20 @@ You can make this adapter from an old printer cable and solder things
directly to the Butterfly. Or (if you have the parts and skills) you
can come up with something fancier, providing ciruit protection to the
Butterfly and the printer port, or with a better power supply than two
-signal pins from the printer port.
+signal pins from the printer port. Or for that matter, you can use
+similar cables to talk to many AVR boards, even a breadboard.
+
+This is more powerful than "ISP programming" cables since it lets kernel
+SPI protocol drivers interact with the AVR, and could even let the AVR
+issue interrupts to them. Later, your protocol driver should work
+easily with a "real SPI controller", instead of this bitbanger.
The first cable connections will hook Linux up to one SPI bus, with the
AVR and a DataFlash chip; and to the AVR reset line. This is all you
need to reflash the firmware, and the pins are the standard Atmel "ISP"
-connector pins (used also on non-Butterfly AVR boards).
+connector pins (used also on non-Butterfly AVR boards). On the parport
+side this is like "sp12" programming cables.
Signal Butterfly Parport (DB-25)
------ --------- ---------------
@@ -40,10 +47,14 @@ by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and
SELECT = J400.PB0/nSS = pin 17/C3,nSELECT
GND = J400.GND = pin 24/GND
-The "USI" controller, using J405, can be used for a second SPI bus. That
-would let you talk to the AVR over SPI, running firmware that makes it act
-as an SPI slave, while letting either Linux or the AVR use the DataFlash.
-There are plenty of spare parport pins to wire this one up, such as:
+Or you could flash firmware making the AVR into an SPI slave (keeping the
+DataFlash in reset) and tweak the spi_butterfly driver to make it bind to
+the driver for your custom SPI-based protocol.
+
+The "USI" controller, using J405, can also be used for a second SPI bus.
+That would let you talk to the AVR using custom SPI-with-USI firmware,
+while letting either Linux or the AVR use the DataFlash. There are plenty
+of spare parport pins to wire this one up, such as:
Signal Butterfly Parport (DB-25)
------ --------- ---------------
diff --git a/Documentation/unshare.txt b/Documentation/unshare.txt
new file mode 100644
index 00000000000..90a5e9e5bef
--- /dev/null
+++ b/Documentation/unshare.txt
@@ -0,0 +1,295 @@
+
+unshare system call:
+--------------------
+This document describes the new system call, unshare. The document
+provides an overview of the feature, why it is needed, how it can
+be used, its interface specification, design, implementation and
+how it can be tested.
+
+Change Log:
+-----------
+version 0.1 Initial document, Janak Desai (janak@us.ibm.com), Jan 11, 2006
+
+Contents:
+---------
+ 1) Overview
+ 2) Benefits
+ 3) Cost
+ 4) Requirements
+ 5) Functional Specification
+ 6) High Level Design
+ 7) Low Level Design
+ 8) Test Specification
+ 9) Future Work
+
+1) Overview
+-----------
+Most legacy operating system kernels support an abstraction of threads
+as multiple execution contexts within a process. These kernels provide
+special resources and mechanisms to maintain these "threads". The Linux
+kernel, in a clever and simple manner, does not make distinction
+between processes and "threads". The kernel allows processes to share
+resources and thus they can achieve legacy "threads" behavior without
+requiring additional data structures and mechanisms in the kernel. The
+power of implementing threads in this manner comes not only from
+its simplicity but also from allowing application programmers to work
+outside the confinement of all-or-nothing shared resources of legacy
+threads. On Linux, at the time of thread creation using the clone system
+call, applications can selectively choose which resources to share
+between threads.
+
+unshare system call adds a primitive to the Linux thread model that
+allows threads to selectively 'unshare' any resources that were being
+shared at the time of their creation. unshare was conceptualized by
+Al Viro in the August of 2000, on the Linux-Kernel mailing list, as part
+of the discussion on POSIX threads on Linux. unshare augments the
+usefulness of Linux threads for applications that would like to control
+shared resources without creating a new process. unshare is a natural
+addition to the set of available primitives on Linux that implement
+the concept of process/thread as a virtual machine.
+
+2) Benefits
+-----------
+unshare would be useful to large application frameworks such as PAM
+where creating a new process to control sharing/unsharing of process
+resources is not possible. Since namespaces are shared by default
+when creating a new process using fork or clone, unshare can benefit
+even non-threaded applications if they have a need to disassociate
+from default shared namespace. The following lists two use-cases
+where unshare can be used.
+
+2.1 Per-security context namespaces
+-----------------------------------
+unshare can be used to implement polyinstantiated directories using
+the kernel's per-process namespace mechanism. Polyinstantiated directories,
+such as per-user and/or per-security context instance of /tmp, /var/tmp or
+per-security context instance of a user's home directory, isolate user
+processes when working with these directories. Using unshare, a PAM
+module can easily setup a private namespace for a user at login.
+Polyinstantiated directories are required for Common Criteria certification
+with Labeled System Protection Profile, however, with the availability
+of shared-tree feature in the Linux kernel, even regular Linux systems
+can benefit from setting up private namespaces at login and
+polyinstantiating /tmp, /var/tmp and other directories deemed
+appropriate by system administrators.
+
+2.2 unsharing of virtual memory and/or open files
+-------------------------------------------------
+Consider a client/server application where the server is processing
+client requests by creating processes that share resources such as
+virtual memory and open files. Without unshare, the server has to
+decide what needs to be shared at the time of creating the process
+which services the request. unshare allows the server an ability to
+disassociate parts of the context during the servicing of the
+request. For large and complex middleware application frameworks, this
+ability to unshare after the process was created can be very
+useful.
+
+3) Cost
+-------
+In order to not duplicate code and to handle the fact that unshare
+works on an active task (as opposed to clone/fork working on a newly
+allocated inactive task) unshare had to make minor reorganizational
+changes to copy_* functions utilized by clone/fork system call.
+There is a cost associated with altering existing, well tested and
+stable code to implement a new feature that may not get exercised
+extensively in the beginning. However, with proper design and code
+review of the changes and creation of an unshare test for the LTP
+the benefits of this new feature can exceed its cost.
+
+4) Requirements
+---------------
+unshare reverses sharing that was done using clone(2) system call,
+so unshare should have a similar interface as clone(2). That is,
+since flags in clone(int flags, void *stack) specifies what should
+be shared, similar flags in unshare(int flags) should specify
+what should be unshared. Unfortunately, this may appear to invert
+the meaning of the flags from the way they are used in clone(2).
+However, there was no easy solution that was less confusing and that
+allowed incremental context unsharing in future without an ABI change.
+
+unshare interface should accommodate possible future addition of
+new context flags without requiring a rebuild of old applications.
+If and when new context flags are added, unshare design should allow
+incremental unsharing of those resources on an as needed basis.
+
+5) Functional Specification
+---------------------------
+NAME
+ unshare - disassociate parts of the process execution context
+
+SYNOPSIS
+ #include <sched.h>
+
+ int unshare(int flags);
+
+DESCRIPTION
+ unshare allows a process to disassociate parts of its execution
+ context that are currently being shared with other processes. Part
+ of execution context, such as the namespace, is shared by default
+ when a new process is created using fork(2), while other parts,
+ such as the virtual memory, open file descriptors, etc, may be
+ shared by explicit request to share them when creating a process
+ using clone(2).
+
+ The main use of unshare is to allow a process to control its
+ shared execution context without creating a new process.
+
+ The flags argument specifies one or bitwise-or'ed of several of
+ the following constants.
+
+ CLONE_FS
+ If CLONE_FS is set, file system information of the caller
+ is disassociated from the shared file system information.
+
+ CLONE_FILES
+ If CLONE_FILES is set, the file descriptor table of the
+ caller is disassociated from the shared file descriptor
+ table.
+
+ CLONE_NEWNS
+ If CLONE_NEWNS is set, the namespace of the caller is
+ disassociated from the shared namespace.
+
+ CLONE_VM
+ If CLONE_VM is set, the virtual memory of the caller is
+ disassociated from the shared virtual memory.
+
+RETURN VALUE
+ On success, zero returned. On failure, -1 is returned and errno is
+
+ERRORS
+ EPERM CLONE_NEWNS was specified by a non-root process (process
+ without CAP_SYS_ADMIN).
+
+ ENOMEM Cannot allocate sufficient memory to copy parts of caller's
+ context that need to be unshared.
+
+ EINVAL Invalid flag was specified as an argument.
+
+CONFORMING TO
+ The unshare() call is Linux-specific and should not be used
+ in programs intended to be portable.
+
+SEE ALSO
+ clone(2), fork(2)
+
+6) High Level Design
+--------------------
+Depending on the flags argument, the unshare system call allocates
+appropriate process context structures, populates it with values from
+the current shared version, associates newly duplicated structures
+with the current task structure and releases corresponding shared
+versions. Helper functions of clone (copy_*) could not be used
+directly by unshare because of the following two reasons.
+ 1) clone operates on a newly allocated not-yet-active task
+ structure, where as unshare operates on the current active
+ task. Therefore unshare has to take appropriate task_lock()
+ before associating newly duplicated context structures
+ 2) unshare has to allocate and duplicate all context structures
+ that are being unshared, before associating them with the
+ current task and releasing older shared structures. Failure
+ do so will create race conditions and/or oops when trying
+ to backout due to an error. Consider the case of unsharing
+ both virtual memory and namespace. After successfully unsharing
+ vm, if the system call encounters an error while allocating
+ new namespace structure, the error return code will have to
+ reverse the unsharing of vm. As part of the reversal the
+ system call will have to go back to older, shared, vm
+ structure, which may not exist anymore.
+
+Therefore code from copy_* functions that allocated and duplicated
+current context structure was moved into new dup_* functions. Now,
+copy_* functions call dup_* functions to allocate and duplicate
+appropriate context structures and then associate them with the
+task structure that is being constructed. unshare system call on
+the other hand performs the following:
+ 1) Check flags to force missing, but implied, flags
+ 2) For each context structure, call the corresponding unshare
+ helper function to allocate and duplicate a new context
+ structure, if the appropriate bit is set in the flags argument.
+ 3) If there is no error in allocation and duplication and there
+ are new context structures then lock the current task structure,
+ associate new context structures with the current task structure,
+ and release the lock on the current task structure.
+ 4) Appropriately release older, shared, context structures.
+
+7) Low Level Design
+-------------------
+Implementation of unshare can be grouped in the following 4 different
+items:
+ a) Reorganization of existing copy_* functions
+ b) unshare system call service function
+ c) unshare helper functions for each different process context
+ d) Registration of system call number for different architectures
+
+ 7.1) Reorganization of copy_* functions
+ Each copy function such as copy_mm, copy_namespace, copy_files,
+ etc, had roughly two components. The first component allocated
+ and duplicated the appropriate structure and the second component
+ linked it to the task structure passed in as an argument to the copy
+ function. The first component was split into its own function.
+ These dup_* functions allocated and duplicated the appropriate
+ context structure. The reorganized copy_* functions invoked
+ their corresponding dup_* functions and then linked the newly
+ duplicated structures to the task structure with which the
+ copy function was called.
+
+ 7.2) unshare system call service function
+ * Check flags
+ Force implied flags. If CLONE_THREAD is set force CLONE_VM.
+ If CLONE_VM is set, force CLONE_SIGHAND. If CLONE_SIGHAND is
+ set and signals are also being shared, force CLONE_THREAD. If
+ CLONE_NEWNS is set, force CLONE_FS.
+ * For each context flag, invoke the corresponding unshare_*
+ helper routine with flags passed into the system call and a
+ reference to pointer pointing the new unshared structure
+ * If any new structures are created by unshare_* helper
+ functions, take the task_lock() on the current task,
+ modify appropriate context pointers, and release the
+ task lock.
+ * For all newly unshared structures, release the corresponding
+ older, shared, structures.
+
+ 7.3) unshare_* helper functions
+ For unshare_* helpers corresponding to CLONE_SYSVSEM, CLONE_SIGHAND,
+ and CLONE_THREAD, return -EINVAL since they are not implemented yet.
+ For others, check the flag value to see if the unsharing is
+ required for that structure. If it is, invoke the corresponding
+ dup_* function to allocate and duplicate the structure and return
+ a pointer to it.
+
+ 7.4) Appropriately modify architecture specific code to register the
+ the new system call.
+
+8) Test Specification
+---------------------
+The test for unshare should test the following:
+ 1) Valid flags: Test to check that clone flags for signal and
+ signal handlers, for which unsharing is not implemented
+ yet, return -EINVAL.
+ 2) Missing/implied flags: Test to make sure that if unsharing
+ namespace without specifying unsharing of filesystem, correctly
+ unshares both namespace and filesystem information.
+ 3) For each of the four (namespace, filesystem, files and vm)
+ supported unsharing, verify that the system call correctly
+ unshares the appropriate structure. Verify that unsharing
+ them individually as well as in combination with each
+ other works as expected.
+ 4) Concurrent execution: Use shared memory segments and futex on
+ an address in the shm segment to synchronize execution of
+ about 10 threads. Have a couple of threads execute execve,
+ a couple _exit and the rest unshare with different combination
+ of flags. Verify that unsharing is performed as expected and
+ that there are no oops or hangs.
+
+9) Future Work
+--------------
+The current implementation of unshare does not allow unsharing of
+signals and signal handlers. Signals are complex to begin with and
+to unshare signals and/or signal handlers of a currently running
+process is even more complex. If in the future there is a specific
+need to allow unsharing of signals and/or signal handlers, it can
+be incrementally added to unshare without affecting legacy
+applications using unshare.
+
diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88
index 56e194f1a0b..8bea3fbd054 100644
--- a/Documentation/video4linux/CARDLIST.cx88
+++ b/Documentation/video4linux/CARDLIST.cx88
@@ -42,4 +42,4 @@
41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802]
42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025]
43 -> KWorld/VStream XPert DVB-T with cx22702 [17de:08a1]
- 44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50]
+ 44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50,18ac:db54]
diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134
index cb3a59bbeb1..8a352597830 100644
--- a/Documentation/video4linux/CARDLIST.saa7134
+++ b/Documentation/video4linux/CARDLIST.saa7134
@@ -1,7 +1,7 @@
0 -> UNKNOWN/GENERIC
1 -> Proteus Pro [philips reference design] [1131:2001,1131:2001]
2 -> LifeView FlyVIDEO3000 [5168:0138,4e42:0138]
- 3 -> LifeView FlyVIDEO2000 [5168:0138]
+ 3 -> LifeView/Typhoon FlyVIDEO2000 [5168:0138,4e42:0138]
4 -> EMPRESS [1131:6752]
5 -> SKNet Monster TV [1131:4e85]
6 -> Tevion MD 9717
@@ -53,12 +53,12 @@
52 -> AverMedia AverTV/305 [1461:2108]
53 -> ASUS TV-FM 7135 [1043:4845]
54 -> LifeView FlyTV Platinum FM [5168:0214,1489:0214]
- 55 -> LifeView FlyDVB-T DUO [5168:0502,5168:0306]
+ 55 -> LifeView FlyDVB-T DUO [5168:0306]
56 -> Avermedia AVerTV 307 [1461:a70a]
57 -> Avermedia AVerTV GO 007 FM [1461:f31f]
58 -> ADS Tech Instant TV (saa7135) [1421:0350,1421:0351,1421:0370,1421:1370]
59 -> Kworld/Tevion V-Stream Xpert TV PVR7134
- 60 -> Typhoon DVB-T Duo Digital/Analog Cardbus [4e42:0502]
+ 60 -> LifeView/Typhoon FlyDVB-T Duo Cardbus [5168:0502,4e42:0502]
61 -> Philips TOUGH DVB-T reference design [1131:2004]
62 -> Compro VideoMate TV Gold+II
63 -> Kworld Xpert TV PVR7134
diff --git a/Documentation/x86_64/boot-options.txt b/Documentation/x86_64/boot-options.txt
index 9c5fc15d03d..153740f460a 100644
--- a/Documentation/x86_64/boot-options.txt
+++ b/Documentation/x86_64/boot-options.txt
@@ -40,6 +40,18 @@ APICs
no_timer_check Don't check the IO-APIC timer. This can work around
problems with incorrect timer initialization on some boards.
+ apicmaintimer Run time keeping from the local APIC timer instead
+ of using the PIT/HPET interrupt for this. This is useful
+ when the PIT/HPET interrupts are unreliable.
+
+ noapicmaintimer Don't do time keeping using the APIC timer.
+ Useful when this option was auto selected, but doesn't work.
+
+ apicpmtimer
+ Do APIC timer calibration using the pmtimer. Implies
+ apicmaintimer. Useful when your PIT timer is totally
+ broken.
+
Early Console
syntax: earlyprintk=vga