#ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H #include #include #include #include /* * Your basic SMP spinlocks, allowing only a single CPU anywhere * * Simple spin lock operations. There are two variants, one clears IRQ's * on the local processor, one does not. * * We make no fairness assumptions. They have a cost. * * (the type definitions are in asm/spinlock_types.h) */ static inline int __raw_spin_is_locked(raw_spinlock_t *lock) { return *(volatile signed int *)(&(lock)->slock) <= 0; } static inline void __raw_spin_lock(raw_spinlock_t *lock) { asm volatile( "\n1:\t" LOCK_PREFIX " ; decl %0\n\t" "jns 2f\n" "3:\n" "rep;nop\n\t" "cmpl $0,%0\n\t" "jle 3b\n\t" "jmp 1b\n" "2:\t" : "=m" (lock->slock) : : "memory"); } /* * Same as __raw_spin_lock, but reenable interrupts during spinning. */ #ifndef CONFIG_PROVE_LOCKING static inline void __raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long flags) { asm volatile( "\n1:\t" LOCK_PREFIX " ; decl %0\n\t" "jns 5f\n" "testl $0x200, %1\n\t" /* interrupts were disabled? */ "jz 4f\n\t" "sti\n" "3:\t" "rep;nop\n\t" "cmpl $0, %0\n\t" "jle 3b\n\t" "cli\n\t" "jmp 1b\n" "4:\t" "rep;nop\n\t" "cmpl $0, %0\n\t" "jg 1b\n\t" "jmp 4b\n" "5:\n\t" : "+m" (lock->slock) : "r" ((unsigned)flags) : "memory"); } #endif static inline int __raw_spin_trylock(raw_spinlock_t *lock) { int oldval; asm volatile( "xchgl %0,%1" :"=q" (oldval), "=m" (lock->slock) :"0" (0) : "memory"); return oldval > 0; } static inline void __raw_spin_unlock(raw_spinlock_t *lock) { asm volatile("movl $1,%0" :"=m" (lock->slock) :: "memory"); } static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock) { while (__raw_spin_is_locked(lock)) cpu_relax(); } /* * Read-write spinlocks, allowing multiple readers * but only one writer. * * NOTE! it is quite common to have readers in interrupts * but no interrupt writers. For those circumstances we * can "mix" irq-safe locks - any writer needs to get a * irq-safe write-lock, but readers can get non-irqsafe * read-locks. * * On x86, we implement read-write locks as a 32-bit counter * with the high bit (sign) being the "contended" bit. */ static inline int __raw_read_can_lock(raw_rwlock_t *lock) { return (int)(lock)->lock > 0; } static inline int __raw_write_can_lock(raw_rwlock_t *lock) { return (lock)->lock == RW_LOCK_BIAS; } static inline void __raw_read_lock(raw_rwlock_t *rw) { asm volatile(LOCK_PREFIX "subl $1,(%0)\n\t" "jns 1f\n" "call __read_lock_failed\n" "1:\n" ::"D" (rw), "i" (RW_LOCK_BIAS) : "memory"); } static inline void __raw_write_lock(raw_rwlock_t *rw) { asm volatile(LOCK_PREFIX "subl %1,(%0)\n\t" "jz 1f\n" "\tcall __write_lock_failed\n\t" "1:\n" ::"D" (rw), "i" (RW_LOCK_BIAS) : "memory"); } static inline int __raw_read_trylock(raw_rwlock_t *lock) { atomic_t *count = (atomic_t *)lock; atomic_dec(count); if (atomic_read(count) >= 0) return 1; atomic_inc(count); return 0; } static inline int __raw_write_trylock(raw_rwlock_t *lock) { atomic_t *count = (atomic_t *)lock; if (atomic_sub_and_test(RW_LOCK_BIAS, count)) return 1; atomic_add(RW_LOCK_BIAS, count); return 0; } static inline void __raw_read_unlock(raw_rwlock_t *rw) { asm volatile(LOCK_PREFIX " ; incl %0" :"=m" (rw->lock) : : "memory"); } static inline void __raw_write_unlock(raw_rwlock_t *rw) { asm volatile(LOCK_PREFIX " ; addl $" RW_LOCK_BIAS_STR ",%0" : "=m" (rw->lock) : : "memory"); } #define _raw_spin_relax(lock) cpu_relax() #define _raw_read_relax(lock) cpu_relax() #define _raw_write_relax(lock) cpu_relax() #endif /* __ASM_SPINLOCK_H */