/* * Copyright (c) 2004-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "hif-ops.h" #include "target.h" #include "debug.h" static int ath6kl_get_bmi_cmd_credits(struct ath6kl *ar) { u32 addr; unsigned long timeout; int ret; ar->bmi.cmd_credits = 0; /* Read the counter register to get the command credits */ addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4; timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) { /* * Hit the credit counter with a 4-byte access, the first byte * read will hit the counter and cause a decrement, while the * remaining 3 bytes has no effect. The rationale behind this * is to make all HIF accesses 4-byte aligned. */ ret = hif_read_write_sync(ar, addr, (u8 *)&ar->bmi.cmd_credits, 4, HIF_RD_SYNC_BYTE_INC); if (ret) { ath6kl_err("Unable to decrement the command credit count register: %d\n", ret); return ret; } /* The counter is only 8 bits. * Ignore anything in the upper 3 bytes */ ar->bmi.cmd_credits &= 0xFF; } if (!ar->bmi.cmd_credits) { ath6kl_err("bmi communication timeout\n"); return -ETIMEDOUT; } return 0; } static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar) { unsigned long timeout; u32 rx_word = 0; int ret = 0; timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); while (time_before(jiffies, timeout) && !rx_word) { ret = hif_read_write_sync(ar, RX_LOOKAHEAD_VALID_ADDRESS, (u8 *)&rx_word, sizeof(rx_word), HIF_RD_SYNC_BYTE_INC); if (ret) { ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n"); return ret; } /* all we really want is one bit */ rx_word &= (1 << ENDPOINT1); } if (!rx_word) { ath6kl_err("bmi_recv_buf FIFO empty\n"); return -EINVAL; } return ret; } static int ath6kl_bmi_send_buf(struct ath6kl *ar, u8 *buf, u32 len) { int ret; u32 addr; ret = ath6kl_get_bmi_cmd_credits(ar); if (ret) return ret; addr = ar->mbox_info.htc_addr; ret = hif_read_write_sync(ar, addr, buf, len, HIF_WR_SYNC_BYTE_INC); if (ret) ath6kl_err("unable to send the bmi data to the device\n"); return ret; } static int ath6kl_bmi_recv_buf(struct ath6kl *ar, u8 *buf, u32 len) { int ret; u32 addr; /* * During normal bootup, small reads may be required. * Rather than issue an HIF Read and then wait as the Target * adds successive bytes to the FIFO, we wait here until * we know that response data is available. * * This allows us to cleanly timeout on an unexpected * Target failure rather than risk problems at the HIF level. * In particular, this avoids SDIO timeouts and possibly garbage * data on some host controllers. And on an interconnect * such as Compact Flash (as well as some SDIO masters) which * does not provide any indication on data timeout, it avoids * a potential hang or garbage response. * * Synchronization is more difficult for reads larger than the * size of the MBOX FIFO (128B), because the Target is unable * to push the 129th byte of data until AFTER the Host posts an * HIF Read and removes some FIFO data. So for large reads the * Host proceeds to post an HIF Read BEFORE all the data is * actually available to read. Fortunately, large BMI reads do * not occur in practice -- they're supported for debug/development. * * So Host/Target BMI synchronization is divided into these cases: * CASE 1: length < 4 * Should not happen * * CASE 2: 4 <= length <= 128 * Wait for first 4 bytes to be in FIFO * If CONSERVATIVE_BMI_READ is enabled, also wait for * a BMI command credit, which indicates that the ENTIRE * response is available in the the FIFO * * CASE 3: length > 128 * Wait for the first 4 bytes to be in FIFO * * For most uses, a small timeout should be sufficient and we will * usually see a response quickly; but there may be some unusual * (debug) cases of BMI_EXECUTE where we want an larger timeout. * For now, we use an unbounded busy loop while waiting for * BMI_EXECUTE. * * If BMI_EXECUTE ever needs to support longer-latency execution, * especially in production, this code needs to be enhanced to sleep * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently * a function of Host processor speed. */ if (len >= 4) { /* NB: Currently, always true */ ret = ath6kl_bmi_get_rx_lkahd(ar); if (ret) return ret; } addr = ar->mbox_info.htc_addr; ret = hif_read_write_sync(ar, addr, buf, len, HIF_RD_SYNC_BYTE_INC); if (ret) { ath6kl_err("Unable to read the bmi data from the device: %d\n", ret); return ret; } return 0; } int ath6kl_bmi_done(struct ath6kl *ar) { int ret; u32 cid = BMI_DONE; if (ar->bmi.done_sent) { ath6kl_dbg(ATH6KL_DBG_BMI, "bmi done skipped\n"); return 0; } ar->bmi.done_sent = true; ret = ath6kl_bmi_send_buf(ar, (u8 *)&cid, sizeof(cid)); if (ret) { ath6kl_err("Unable to send bmi done: %d\n", ret); return ret; } ath6kl_bmi_cleanup(ar); return 0; } int ath6kl_bmi_get_target_info(struct ath6kl *ar, struct ath6kl_bmi_target_info *targ_info) { int ret; u32 cid = BMI_GET_TARGET_INFO; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } ret = ath6kl_bmi_send_buf(ar, (u8 *)&cid, sizeof(cid)); if (ret) { ath6kl_err("Unable to send get target info: %d\n", ret); return ret; } ret = ath6kl_bmi_recv_buf(ar, (u8 *)&targ_info->version, sizeof(targ_info->version)); if (ret) { ath6kl_err("Unable to recv target info: %d\n", ret); return ret; } if (le32_to_cpu(targ_info->version) == TARGET_VERSION_SENTINAL) { /* Determine how many bytes are in the Target's targ_info */ ret = ath6kl_bmi_recv_buf(ar, (u8 *)&targ_info->byte_count, sizeof(targ_info->byte_count)); if (ret) { ath6kl_err("unable to read target info byte count: %d\n", ret); return ret; } /* * The target's targ_info doesn't match the host's targ_info. * We need to do some backwards compatibility to make this work. */ if (le32_to_cpu(targ_info->byte_count) != sizeof(*targ_info)) { WARN_ON(1); return -EINVAL; } /* Read the remainder of the targ_info */ ret = ath6kl_bmi_recv_buf(ar, ((u8 *)targ_info) + sizeof(targ_info->byte_count), sizeof(*targ_info) - sizeof(targ_info->byte_count)); if (ret) { ath6kl_err("Unable to read target info (%d bytes): %d\n", targ_info->byte_count, ret); return ret; } } ath6kl_dbg(ATH6KL_DBG_BMI, "target info (ver: 0x%x type: 0x%x)\n", targ_info->version, targ_info->type); return 0; } int ath6kl_bmi_read(struct ath6kl *ar, u32 addr, u8 *buf, u32 len) { u32 cid = BMI_READ_MEMORY; int ret; u32 offset; u32 len_remain, rx_len; u16 size; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } size = BMI_DATASZ_MAX + sizeof(cid) + sizeof(addr) + sizeof(len); if (size > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, size); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi read memory: device: addr: 0x%x, len: %d\n", addr, len); len_remain = len; while (len_remain) { rx_len = (len_remain < BMI_DATASZ_MAX) ? len_remain : BMI_DATASZ_MAX; offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &addr, sizeof(addr)); offset += sizeof(addr); memcpy(&(ar->bmi.cmd_buf[offset]), &rx_len, sizeof(rx_len)); offset += sizeof(len); ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to write to the device: %d\n", ret); return ret; } ret = ath6kl_bmi_recv_buf(ar, ar->bmi.cmd_buf, rx_len); if (ret) { ath6kl_err("Unable to read from the device: %d\n", ret); return ret; } memcpy(&buf[len - len_remain], ar->bmi.cmd_buf, rx_len); len_remain -= rx_len; addr += rx_len; } return 0; } int ath6kl_bmi_write(struct ath6kl *ar, u32 addr, u8 *buf, u32 len) { u32 cid = BMI_WRITE_MEMORY; int ret; u32 offset; u32 len_remain, tx_len; const u32 header = sizeof(cid) + sizeof(addr) + sizeof(len); u8 aligned_buf[BMI_DATASZ_MAX]; u8 *src; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } if ((BMI_DATASZ_MAX + header) > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, BMI_DATASZ_MAX + header); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi write memory: addr: 0x%x, len: %d\n", addr, len); len_remain = len; while (len_remain) { src = &buf[len - len_remain]; if (len_remain < (BMI_DATASZ_MAX - header)) { if (len_remain & 3) { /* align it with 4 bytes */ len_remain = len_remain + (4 - (len_remain & 3)); memcpy(aligned_buf, src, len_remain); src = aligned_buf; } tx_len = len_remain; } else { tx_len = (BMI_DATASZ_MAX - header); } offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &addr, sizeof(addr)); offset += sizeof(addr); memcpy(&(ar->bmi.cmd_buf[offset]), &tx_len, sizeof(tx_len)); offset += sizeof(tx_len); memcpy(&(ar->bmi.cmd_buf[offset]), src, tx_len); offset += tx_len; ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to write to the device: %d\n", ret); return ret; } len_remain -= tx_len; addr += tx_len; } return 0; } int ath6kl_bmi_execute(struct ath6kl *ar, u32 addr, u32 *param) { u32 cid = BMI_EXECUTE; int ret; u32 offset; u16 size; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } size = sizeof(cid) + sizeof(addr) + sizeof(param); if (size > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, size); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi execute: addr: 0x%x, param: %d)\n", addr, *param); offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &addr, sizeof(addr)); offset += sizeof(addr); memcpy(&(ar->bmi.cmd_buf[offset]), param, sizeof(*param)); offset += sizeof(*param); ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to write to the device: %d\n", ret); return ret; } ret = ath6kl_bmi_recv_buf(ar, ar->bmi.cmd_buf, sizeof(*param)); if (ret) { ath6kl_err("Unable to read from the device: %d\n", ret); return ret; } memcpy(param, ar->bmi.cmd_buf, sizeof(*param)); return 0; } int ath6kl_bmi_set_app_start(struct ath6kl *ar, u32 addr) { u32 cid = BMI_SET_APP_START; int ret; u32 offset; u16 size; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } size = sizeof(cid) + sizeof(addr); if (size > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, size); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi set app start: addr: 0x%x\n", addr); offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &addr, sizeof(addr)); offset += sizeof(addr); ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to write to the device: %d\n", ret); return ret; } return 0; } int ath6kl_bmi_reg_read(struct ath6kl *ar, u32 addr, u32 *param) { u32 cid = BMI_READ_SOC_REGISTER; int ret; u32 offset; u16 size; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } size = sizeof(cid) + sizeof(addr); if (size > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, size); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi read SOC reg: addr: 0x%x\n", addr); offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &addr, sizeof(addr)); offset += sizeof(addr); ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to write to the device: %d\n", ret); return ret; } ret = ath6kl_bmi_recv_buf(ar, ar->bmi.cmd_buf, sizeof(*param)); if (ret) { ath6kl_err("Unable to read from the device: %d\n", ret); return ret; } memcpy(param, ar->bmi.cmd_buf, sizeof(*param)); return 0; } int ath6kl_bmi_reg_write(struct ath6kl *ar, u32 addr, u32 param) { u32 cid = BMI_WRITE_SOC_REGISTER; int ret; u32 offset; u16 size; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } size = sizeof(cid) + sizeof(addr) + sizeof(param); if (size > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, size); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi write SOC reg: addr: 0x%x, param: %d\n", addr, param); offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &addr, sizeof(addr)); offset += sizeof(addr); memcpy(&(ar->bmi.cmd_buf[offset]), ¶m, sizeof(param)); offset += sizeof(param); ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to write to the device: %d\n", ret); return ret; } return 0; } int ath6kl_bmi_lz_data(struct ath6kl *ar, u8 *buf, u32 len) { u32 cid = BMI_LZ_DATA; int ret; u32 offset; u32 len_remain, tx_len; const u32 header = sizeof(cid) + sizeof(len); u16 size; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } size = BMI_DATASZ_MAX + header; if (size > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, size); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi send LZ data: len: %d)\n", len); len_remain = len; while (len_remain) { tx_len = (len_remain < (BMI_DATASZ_MAX - header)) ? len_remain : (BMI_DATASZ_MAX - header); offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &tx_len, sizeof(tx_len)); offset += sizeof(tx_len); memcpy(&(ar->bmi.cmd_buf[offset]), &buf[len - len_remain], tx_len); offset += tx_len; ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to write to the device: %d\n", ret); return ret; } len_remain -= tx_len; } return 0; } int ath6kl_bmi_lz_stream_start(struct ath6kl *ar, u32 addr) { u32 cid = BMI_LZ_STREAM_START; int ret; u32 offset; u16 size; if (ar->bmi.done_sent) { ath6kl_err("bmi done sent already, cmd %d disallowed\n", cid); return -EACCES; } size = sizeof(cid) + sizeof(addr); if (size > MAX_BMI_CMDBUF_SZ) { WARN_ON(1); return -EINVAL; } memset(ar->bmi.cmd_buf, 0, size); ath6kl_dbg(ATH6KL_DBG_BMI, "bmi LZ stream start: addr: 0x%x)\n", addr); offset = 0; memcpy(&(ar->bmi.cmd_buf[offset]), &cid, sizeof(cid)); offset += sizeof(cid); memcpy(&(ar->bmi.cmd_buf[offset]), &addr, sizeof(addr)); offset += sizeof(addr); ret = ath6kl_bmi_send_buf(ar, ar->bmi.cmd_buf, offset); if (ret) { ath6kl_err("Unable to start LZ stream to the device: %d\n", ret); return ret; } return 0; } int ath6kl_bmi_fast_download(struct ath6kl *ar, u32 addr, u8 *buf, u32 len) { int ret; u32 last_word = 0; u32 last_word_offset = len & ~0x3; u32 unaligned_bytes = len & 0x3; ret = ath6kl_bmi_lz_stream_start(ar, addr); if (ret) return ret; if (unaligned_bytes) { /* copy the last word into a zero padded buffer */ memcpy(&last_word, &buf[last_word_offset], unaligned_bytes); } ret = ath6kl_bmi_lz_data(ar, buf, last_word_offset); if (ret) return ret; if (unaligned_bytes) ret = ath6kl_bmi_lz_data(ar, (u8 *)&last_word, 4); if (!ret) { /* Close compressed stream and open a new (fake) one. * This serves mainly to flush Target caches. */ ret = ath6kl_bmi_lz_stream_start(ar, 0x00); } return ret; } int ath6kl_bmi_init(struct ath6kl *ar) { ar->bmi.cmd_buf = kzalloc(MAX_BMI_CMDBUF_SZ, GFP_ATOMIC); if (!ar->bmi.cmd_buf) return -ENOMEM; return 0; } void ath6kl_bmi_cleanup(struct ath6kl *ar) { kfree(ar->bmi.cmd_buf); ar->bmi.cmd_buf = NULL; }