/* * Machine check handler. * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. * Rest from unknown author(s). * 2004 Andi Kleen. Rewrote most of it. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MISC_MCELOG_MINOR 227 #define NR_BANKS 6 atomic_t mce_entry; static int mce_dont_init; /* * Tolerant levels: * 0: always panic on uncorrected errors, log corrected errors * 1: panic or SIGBUS on uncorrected errors, log corrected errors * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors * 3: never panic or SIGBUS, log all errors (for testing only) */ static int tolerant = 1; static int banks; static unsigned long bank[NR_BANKS] = { [0 ... NR_BANKS-1] = ~0UL }; static unsigned long notify_user; static int rip_msr; static int mce_bootlog = 1; static atomic_t mce_events; static char trigger[128]; static char *trigger_argv[2] = { trigger, NULL }; static DECLARE_WAIT_QUEUE_HEAD(mce_wait); /* * Lockless MCE logging infrastructure. * This avoids deadlocks on printk locks without having to break locks. Also * separate MCEs from kernel messages to avoid bogus bug reports. */ struct mce_log mcelog = { MCE_LOG_SIGNATURE, MCE_LOG_LEN, }; void mce_log(struct mce *mce) { unsigned next, entry; atomic_inc(&mce_events); mce->finished = 0; wmb(); for (;;) { entry = rcu_dereference(mcelog.next); /* The rmb forces the compiler to reload next in each iteration */ rmb(); for (;;) { /* When the buffer fills up discard new entries. Assume that the earlier errors are the more interesting. */ if (entry >= MCE_LOG_LEN) { set_bit(MCE_OVERFLOW, &mcelog.flags); return; } /* Old left over entry. Skip. */ if (mcelog.entry[entry].finished) { entry++; continue; } break; } smp_rmb(); next = entry + 1; if (cmpxchg(&mcelog.next, entry, next) == entry) break; } memcpy(mcelog.entry + entry, mce, sizeof(struct mce)); wmb(); mcelog.entry[entry].finished = 1; wmb(); set_bit(0, ¬ify_user); } static void print_mce(struct mce *m) { printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n" KERN_EMERG "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n", m->cpu, m->mcgstatus, m->bank, m->status); if (m->rip) { printk(KERN_EMERG "RIP%s %02x:<%016Lx> ", !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", m->cs, m->rip); if (m->cs == __KERNEL_CS) print_symbol("{%s}", m->rip); printk("\n"); } printk(KERN_EMERG "TSC %Lx ", m->tsc); if (m->addr) printk("ADDR %Lx ", m->addr); if (m->misc) printk("MISC %Lx ", m->misc); printk("\n"); printk(KERN_EMERG "This is not a software problem!\n"); printk(KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n"); } static void mce_panic(char *msg, struct mce *backup, unsigned long start) { int i; oops_begin(); for (i = 0; i < MCE_LOG_LEN; i++) { unsigned long tsc = mcelog.entry[i].tsc; if (time_before(tsc, start)) continue; print_mce(&mcelog.entry[i]); if (backup && mcelog.entry[i].tsc == backup->tsc) backup = NULL; } if (backup) print_mce(backup); panic(msg); } static int mce_available(struct cpuinfo_x86 *c) { return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); } static inline void mce_get_rip(struct mce *m, struct pt_regs *regs) { if (regs && (m->mcgstatus & MCG_STATUS_RIPV)) { m->rip = regs->rip; m->cs = regs->cs; } else { m->rip = 0; m->cs = 0; } if (rip_msr) { /* Assume the RIP in the MSR is exact. Is this true? */ m->mcgstatus |= MCG_STATUS_EIPV; rdmsrl(rip_msr, m->rip); m->cs = 0; } } /* * The actual machine check handler */ void do_machine_check(struct pt_regs * regs, long error_code) { struct mce m, panicm; u64 mcestart = 0; int i; int panicm_found = 0; /* * If no_way_out gets set, there is no safe way to recover from this * MCE. If tolerant is cranked up, we'll try anyway. */ int no_way_out = 0; /* * If kill_it gets set, there might be a way to recover from this * error. */ int kill_it = 0; atomic_inc(&mce_entry); if (regs) notify_die(DIE_NMI, "machine check", regs, error_code, 18, SIGKILL); if (!banks) goto out2; memset(&m, 0, sizeof(struct mce)); m.cpu = smp_processor_id(); rdmsrl(MSR_IA32_MCG_STATUS, m.mcgstatus); /* if the restart IP is not valid, we're done for */ if (!(m.mcgstatus & MCG_STATUS_RIPV)) no_way_out = 1; rdtscll(mcestart); barrier(); for (i = 0; i < banks; i++) { if (!bank[i]) continue; m.misc = 0; m.addr = 0; m.bank = i; m.tsc = 0; rdmsrl(MSR_IA32_MC0_STATUS + i*4, m.status); if ((m.status & MCI_STATUS_VAL) == 0) continue; if (m.status & MCI_STATUS_EN) { /* if PCC was set, there's no way out */ no_way_out |= !!(m.status & MCI_STATUS_PCC); /* * If this error was uncorrectable and there was * an overflow, we're in trouble. If no overflow, * we might get away with just killing a task. */ if (m.status & MCI_STATUS_UC) { if (tolerant < 1 || m.status & MCI_STATUS_OVER) no_way_out = 1; kill_it = 1; } } if (m.status & MCI_STATUS_MISCV) rdmsrl(MSR_IA32_MC0_MISC + i*4, m.misc); if (m.status & MCI_STATUS_ADDRV) rdmsrl(MSR_IA32_MC0_ADDR + i*4, m.addr); mce_get_rip(&m, regs); if (error_code >= 0) rdtscll(m.tsc); if (error_code != -2) mce_log(&m); /* Did this bank cause the exception? */ /* Assume that the bank with uncorrectable errors did it, and that there is only a single one. */ if ((m.status & MCI_STATUS_UC) && (m.status & MCI_STATUS_EN)) { panicm = m; panicm_found = 1; } add_taint(TAINT_MACHINE_CHECK); } /* Never do anything final in the polling timer */ if (!regs) goto out; /* If we didn't find an uncorrectable error, pick the last one (shouldn't happen, just being safe). */ if (!panicm_found) panicm = m; /* * If we have decided that we just CAN'T continue, and the user * has not set tolerant to an insane level, give up and die. */ if (no_way_out && tolerant < 3) mce_panic("Machine check", &panicm, mcestart); /* * If the error seems to be unrecoverable, something should be * done. Try to kill as little as possible. If we can kill just * one task, do that. If the user has set the tolerance very * high, don't try to do anything at all. */ if (kill_it && tolerant < 3) { int user_space = 0; /* * If the EIPV bit is set, it means the saved IP is the * instruction which caused the MCE. */ if (m.mcgstatus & MCG_STATUS_EIPV) user_space = panicm.rip && (panicm.cs & 3); /* * If we know that the error was in user space, send a * SIGBUS. Otherwise, panic if tolerance is low. * * do_exit() takes an awful lot of locks and has a slight * risk of deadlocking. */ if (user_space) { do_exit(SIGBUS); } else if (panic_on_oops || tolerant < 2) { mce_panic("Uncorrected machine check", &panicm, mcestart); } } /* notify userspace ASAP */ set_thread_flag(TIF_MCE_NOTIFY); out: /* the last thing we do is clear state */ for (i = 0; i < banks; i++) wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0); wrmsrl(MSR_IA32_MCG_STATUS, 0); out2: atomic_dec(&mce_entry); } #ifdef CONFIG_X86_MCE_INTEL /*** * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog * @cpu: The CPU on which the event occured. * @status: Event status information * * This function should be called by the thermal interrupt after the * event has been processed and the decision was made to log the event * further. * * The status parameter will be saved to the 'status' field of 'struct mce' * and historically has been the register value of the * MSR_IA32_THERMAL_STATUS (Intel) msr. */ void mce_log_therm_throt_event(unsigned int cpu, __u64 status) { struct mce m; memset(&m, 0, sizeof(m)); m.cpu = cpu; m.bank = MCE_THERMAL_BANK; m.status = status; rdtscll(m.tsc); mce_log(&m); } #endif /* CONFIG_X86_MCE_INTEL */ /* * Periodic polling timer for "silent" machine check errors. If the * poller finds an MCE, poll 2x faster. When the poller finds no more * errors, poll 2x slower (up to check_interval seconds). */ static int check_interval = 5 * 60; /* 5 minutes */ static int next_interval; /* in jiffies */ static void mcheck_timer(struct work_struct *work); static DECLARE_DELAYED_WORK(mcheck_work, mcheck_timer); static void mcheck_check_cpu(void *info) { if (mce_available(¤t_cpu_data)) do_machine_check(NULL, 0); } static void mcheck_timer(struct work_struct *work) { on_each_cpu(mcheck_check_cpu, NULL, 1, 1); /* * Alert userspace if needed. If we logged an MCE, reduce the * polling interval, otherwise increase the polling interval. */ if (mce_notify_user()) { next_interval = max(next_interval/2, HZ/100); } else { next_interval = min(next_interval*2, (int)round_jiffies_relative(check_interval*HZ)); } schedule_delayed_work(&mcheck_work, next_interval); } /* * This is only called from process context. This is where we do * anything we need to alert userspace about new MCEs. This is called * directly from the poller and also from entry.S and idle, thanks to * TIF_MCE_NOTIFY. */ int mce_notify_user(void) { clear_thread_flag(TIF_MCE_NOTIFY); if (test_and_clear_bit(0, ¬ify_user)) { static unsigned long last_print; unsigned long now = jiffies; wake_up_interruptible(&mce_wait); if (trigger[0]) call_usermodehelper(trigger, trigger_argv, NULL, UMH_NO_WAIT); if (time_after_eq(now, last_print + (check_interval*HZ))) { last_print = now; printk(KERN_INFO "Machine check events logged\n"); } return 1; } return 0; } /* see if the idle task needs to notify userspace */ static int mce_idle_callback(struct notifier_block *nfb, unsigned long action, void *junk) { /* IDLE_END should be safe - interrupts are back on */ if (action == IDLE_END && test_thread_flag(TIF_MCE_NOTIFY)) mce_notify_user(); return NOTIFY_OK; } static struct notifier_block mce_idle_notifier = { .notifier_call = mce_idle_callback, }; static __init int periodic_mcheck_init(void) { next_interval = check_interval * HZ; if (next_interval) schedule_delayed_work(&mcheck_work, round_jiffies_relative(next_interval)); idle_notifier_register(&mce_idle_notifier); return 0; } __initcall(periodic_mcheck_init); /* * Initialize Machine Checks for a CPU. */ static void mce_init(void *dummy) { u64 cap; int i; rdmsrl(MSR_IA32_MCG_CAP, cap); banks = cap & 0xff; if (banks > NR_BANKS) { printk(KERN_INFO "MCE: warning: using only %d banks\n", banks); banks = NR_BANKS; } /* Use accurate RIP reporting if available. */ if ((cap & (1<<9)) && ((cap >> 16) & 0xff) >= 9) rip_msr = MSR_IA32_MCG_EIP; /* Log the machine checks left over from the previous reset. This also clears all registers */ do_machine_check(NULL, mce_bootlog ? -1 : -2); set_in_cr4(X86_CR4_MCE); if (cap & MCG_CTL_P) wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); for (i = 0; i < banks; i++) { wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]); wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0); } } /* Add per CPU specific workarounds here */ static void __cpuinit mce_cpu_quirks(struct cpuinfo_x86 *c) { /* This should be disabled by the BIOS, but isn't always */ if (c->x86_vendor == X86_VENDOR_AMD && c->x86 == 15) { /* disable GART TBL walk error reporting, which trips off incorrectly with the IOMMU & 3ware & Cerberus. */ clear_bit(10, &bank[4]); /* Lots of broken BIOS around that don't clear them by default and leave crap in there. Don't log. */ mce_bootlog = 0; } } static void __cpuinit mce_cpu_features(struct cpuinfo_x86 *c) { switch (c->x86_vendor) { case X86_VENDOR_INTEL: mce_intel_feature_init(c); break; case X86_VENDOR_AMD: mce_amd_feature_init(c); break; default: break; } } /* * Called for each booted CPU to set up machine checks. * Must be called with preempt off. */ void __cpuinit mcheck_init(struct cpuinfo_x86 *c) { static cpumask_t mce_cpus = CPU_MASK_NONE; mce_cpu_quirks(c); if (mce_dont_init || cpu_test_and_set(smp_processor_id(), mce_cpus) || !mce_available(c)) return; mce_init(NULL); mce_cpu_features(c); } /* * Character device to read and clear the MCE log. */ static DEFINE_SPINLOCK(mce_state_lock); static int open_count; /* #times opened */ static int open_exclu; /* already open exclusive? */ static int mce_open(struct inode *inode, struct file *file) { spin_lock(&mce_state_lock); if (open_exclu || (open_count && (file->f_flags & O_EXCL))) { spin_unlock(&mce_state_lock); return -EBUSY; } if (file->f_flags & O_EXCL) open_exclu = 1; open_count++; spin_unlock(&mce_state_lock); return nonseekable_open(inode, file); } static int mce_release(struct inode *inode, struct file *file) { spin_lock(&mce_state_lock); open_count--; open_exclu = 0; spin_unlock(&mce_state_lock); return 0; } static void collect_tscs(void *data) { unsigned long *cpu_tsc = (unsigned long *)data; rdtscll(cpu_tsc[smp_processor_id()]); } static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize, loff_t *off) { unsigned long *cpu_tsc; static DECLARE_MUTEX(mce_read_sem); unsigned next; char __user *buf = ubuf; int i, err; cpu_tsc = kmalloc(NR_CPUS * sizeof(long), GFP_KERNEL); if (!cpu_tsc) return -ENOMEM; down(&mce_read_sem); next = rcu_dereference(mcelog.next); /* Only supports full reads right now */ if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) { up(&mce_read_sem); kfree(cpu_tsc); return -EINVAL; } err = 0; for (i = 0; i < next; i++) { unsigned long start = jiffies; while (!mcelog.entry[i].finished) { if (time_after_eq(jiffies, start + 2)) { memset(mcelog.entry + i,0, sizeof(struct mce)); goto timeout; } cpu_relax(); } smp_rmb(); err |= copy_to_user(buf, mcelog.entry + i, sizeof(struct mce)); buf += sizeof(struct mce); timeout: ; } memset(mcelog.entry, 0, next * sizeof(struct mce)); mcelog.next = 0; synchronize_sched(); /* Collect entries that were still getting written before the synchronize. */ on_each_cpu(collect_tscs, cpu_tsc, 1, 1); for (i = next; i < MCE_LOG_LEN; i++) { if (mcelog.entry[i].finished && mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) { err |= copy_to_user(buf, mcelog.entry+i, sizeof(struct mce)); smp_rmb(); buf += sizeof(struct mce); memset(&mcelog.entry[i], 0, sizeof(struct mce)); } } up(&mce_read_sem); kfree(cpu_tsc); return err ? -EFAULT : buf - ubuf; } static unsigned int mce_poll(struct file *file, poll_table *wait) { poll_wait(file, &mce_wait, wait); if (rcu_dereference(mcelog.next)) return POLLIN | POLLRDNORM; return 0; } static int mce_ioctl(struct inode *i, struct file *f,unsigned int cmd, unsigned long arg) { int __user *p = (int __user *)arg; if (!capable(CAP_SYS_ADMIN)) return -EPERM; switch (cmd) { case MCE_GET_RECORD_LEN: return put_user(sizeof(struct mce), p); case MCE_GET_LOG_LEN: return put_user(MCE_LOG_LEN, p); case MCE_GETCLEAR_FLAGS: { unsigned flags; do { flags = mcelog.flags; } while (cmpxchg(&mcelog.flags, flags, 0) != flags); return put_user(flags, p); } default: return -ENOTTY; } } static const struct file_operations mce_chrdev_ops = { .open = mce_open, .release = mce_release, .read = mce_read, .poll = mce_poll, .ioctl = mce_ioctl, }; static struct miscdevice mce_log_device = { MISC_MCELOG_MINOR, "mcelog", &mce_chrdev_ops, }; static unsigned long old_cr4 __initdata; void __init stop_mce(void) { old_cr4 = read_cr4(); clear_in_cr4(X86_CR4_MCE); } void __init restart_mce(void) { if (old_cr4 & X86_CR4_MCE) set_in_cr4(X86_CR4_MCE); } /* * Old style boot options parsing. Only for compatibility. */ static int __init mcheck_disable(char *str) { mce_dont_init = 1; return 1; } /* mce=off disables machine check. Note you can reenable it later using sysfs. mce=TOLERANCELEVEL (number, see above) mce=bootlog Log MCEs from before booting. Disabled by default on AMD. mce=nobootlog Don't log MCEs from before booting. */ static int __init mcheck_enable(char *str) { if (*str == '=') str++; if (!strcmp(str, "off")) mce_dont_init = 1; else if (!strcmp(str, "bootlog") || !strcmp(str,"nobootlog")) mce_bootlog = str[0] == 'b'; else if (isdigit(str[0])) get_option(&str, &tolerant); else printk("mce= argument %s ignored. Please use /sys", str); return 1; } __setup("nomce", mcheck_disable); __setup("mce", mcheck_enable); /* * Sysfs support */ /* On resume clear all MCE state. Don't want to see leftovers from the BIOS. Only one CPU is active at this time, the others get readded later using CPU hotplug. */ static int mce_resume(struct sys_device *dev) { mce_init(NULL); return 0; } /* Reinit MCEs after user configuration changes */ static void mce_restart(void) { if (next_interval) cancel_delayed_work(&mcheck_work); /* Timer race is harmless here */ on_each_cpu(mce_init, NULL, 1, 1); next_interval = check_interval * HZ; if (next_interval) schedule_delayed_work(&mcheck_work, round_jiffies_relative(next_interval)); } static struct sysdev_class mce_sysclass = { .resume = mce_resume, set_kset_name("machinecheck"), }; DEFINE_PER_CPU(struct sys_device, device_mce); /* Why are there no generic functions for this? */ #define ACCESSOR(name, var, start) \ static ssize_t show_ ## name(struct sys_device *s, char *buf) { \ return sprintf(buf, "%lx\n", (unsigned long)var); \ } \ static ssize_t set_ ## name(struct sys_device *s,const char *buf,size_t siz) { \ char *end; \ unsigned long new = simple_strtoul(buf, &end, 0); \ if (end == buf) return -EINVAL; \ var = new; \ start; \ return end-buf; \ } \ static SYSDEV_ATTR(name, 0644, show_ ## name, set_ ## name); /* TBD should generate these dynamically based on number of available banks */ ACCESSOR(bank0ctl,bank[0],mce_restart()) ACCESSOR(bank1ctl,bank[1],mce_restart()) ACCESSOR(bank2ctl,bank[2],mce_restart()) ACCESSOR(bank3ctl,bank[3],mce_restart()) ACCESSOR(bank4ctl,bank[4],mce_restart()) ACCESSOR(bank5ctl,bank[5],mce_restart()) static ssize_t show_trigger(struct sys_device *s, char *buf) { strcpy(buf, trigger); strcat(buf, "\n"); return strlen(trigger) + 1; } static ssize_t set_trigger(struct sys_device *s,const char *buf,size_t siz) { char *p; int len; strncpy(trigger, buf, sizeof(trigger)); trigger[sizeof(trigger)-1] = 0; len = strlen(trigger); p = strchr(trigger, '\n'); if (*p) *p = 0; return len; } static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger); ACCESSOR(tolerant,tolerant,) ACCESSOR(check_interval,check_interval,mce_restart()) static struct sysdev_attribute *mce_attributes[] = { &attr_bank0ctl, &attr_bank1ctl, &attr_bank2ctl, &attr_bank3ctl, &attr_bank4ctl, &attr_bank5ctl, &attr_tolerant, &attr_check_interval, &attr_trigger, NULL }; /* Per cpu sysdev init. All of the cpus still share the same ctl bank */ static __cpuinit int mce_create_device(unsigned int cpu) { int err; int i; if (!mce_available(&cpu_data[cpu])) return -EIO; per_cpu(device_mce,cpu).id = cpu; per_cpu(device_mce,cpu).cls = &mce_sysclass; err = sysdev_register(&per_cpu(device_mce,cpu)); if (!err) { for (i = 0; mce_attributes[i]; i++) sysdev_create_file(&per_cpu(device_mce,cpu), mce_attributes[i]); } return err; } static void mce_remove_device(unsigned int cpu) { int i; for (i = 0; mce_attributes[i]; i++) sysdev_remove_file(&per_cpu(device_mce,cpu), mce_attributes[i]); sysdev_unregister(&per_cpu(device_mce,cpu)); memset(&per_cpu(device_mce, cpu).kobj, 0, sizeof(struct kobject)); } /* Get notified when a cpu comes on/off. Be hotplug friendly. */ static int mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: mce_create_device(cpu); break; case CPU_DEAD: case CPU_DEAD_FROZEN: mce_remove_device(cpu); break; } return NOTIFY_OK; } static struct notifier_block mce_cpu_notifier = { .notifier_call = mce_cpu_callback, }; static __init int mce_init_device(void) { int err; int i = 0; if (!mce_available(&boot_cpu_data)) return -EIO; err = sysdev_class_register(&mce_sysclass); for_each_online_cpu(i) { mce_create_device(i); } register_hotcpu_notifier(&mce_cpu_notifier); misc_register(&mce_log_device); return err; } device_initcall(mce_init_device);