/* * Handle caching attributes in page tables (PAT) * * Authors: Venkatesh Pallipadi * Suresh B Siddha * * Interval tree (augmented rbtree) used to store the PAT memory type * reservations. */ #include #include #include #include #include #include #include #include #include #include "pat_internal.h" /* * The memtype tree keeps track of memory type for specific * physical memory areas. Without proper tracking, conflicting memory * types in different mappings can cause CPU cache corruption. * * The tree is an interval tree (augmented rbtree) with tree ordered * on starting address. Tree can contain multiple entries for * different regions which overlap. All the aliases have the same * cache attributes of course. * * memtype_lock protects the rbtree. */ static struct rb_root memtype_rbroot = RB_ROOT; static int is_node_overlap(struct memtype *node, u64 start, u64 end) { if (node->start >= end || node->end <= start) return 0; return 1; } static u64 get_subtree_max_end(struct rb_node *node) { u64 ret = 0; if (node) { struct memtype *data = container_of(node, struct memtype, rb); ret = data->subtree_max_end; } return ret; } /* Update 'subtree_max_end' for a node, based on node and its children */ static void memtype_rb_augment_cb(struct rb_node *node, void *__unused) { struct memtype *data; u64 max_end, child_max_end; if (!node) return; data = container_of(node, struct memtype, rb); max_end = data->end; child_max_end = get_subtree_max_end(node->rb_right); if (child_max_end > max_end) max_end = child_max_end; child_max_end = get_subtree_max_end(node->rb_left); if (child_max_end > max_end) max_end = child_max_end; data->subtree_max_end = max_end; } /* Find the first (lowest start addr) overlapping range from rb tree */ static struct memtype *memtype_rb_lowest_match(struct rb_root *root, u64 start, u64 end) { struct rb_node *node = root->rb_node; struct memtype *last_lower = NULL; while (node) { struct memtype *data = container_of(node, struct memtype, rb); if (get_subtree_max_end(node->rb_left) > start) { /* Lowest overlap if any must be on left side */ node = node->rb_left; } else if (is_node_overlap(data, start, end)) { last_lower = data; break; } else if (start >= data->start) { /* Lowest overlap if any must be on right side */ node = node->rb_right; } else { break; } } return last_lower; /* Returns NULL if there is no overlap */ } static struct memtype *memtype_rb_exact_match(struct rb_root *root, u64 start, u64 end) { struct memtype *match; match = memtype_rb_lowest_match(root, start, end); while (match != NULL && match->start < end) { struct rb_node *node; if (match->start == start && match->end == end) return match; node = rb_next(&match->rb); if (node) match = container_of(node, struct memtype, rb); else match = NULL; } return NULL; /* Returns NULL if there is no exact match */ } static int memtype_rb_check_conflict(struct rb_root *root, u64 start, u64 end, unsigned long reqtype, unsigned long *newtype) { struct rb_node *node; struct memtype *match; int found_type = reqtype; match = memtype_rb_lowest_match(&memtype_rbroot, start, end); if (match == NULL) goto success; if (match->type != found_type && newtype == NULL) goto failure; dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end); found_type = match->type; node = rb_next(&match->rb); while (node) { match = container_of(node, struct memtype, rb); if (match->start >= end) /* Checked all possible matches */ goto success; if (is_node_overlap(match, start, end) && match->type != found_type) { goto failure; } node = rb_next(&match->rb); } success: if (newtype) *newtype = found_type; return 0; failure: printk(KERN_INFO "%s:%d conflicting memory types " "%Lx-%Lx %s<->%s\n", current->comm, current->pid, start, end, cattr_name(found_type), cattr_name(match->type)); return -EBUSY; } static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata) { struct rb_node **node = &(root->rb_node); struct rb_node *parent = NULL; while (*node) { struct memtype *data = container_of(*node, struct memtype, rb); parent = *node; if (newdata->start <= data->start) node = &((*node)->rb_left); else if (newdata->start > data->start) node = &((*node)->rb_right); } rb_link_node(&newdata->rb, parent, node); rb_insert_color(&newdata->rb, root); rb_augment_insert(&newdata->rb, memtype_rb_augment_cb, NULL); } int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type) { int err = 0; err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end, new->type, ret_type); if (!err) { if (ret_type) new->type = *ret_type; new->subtree_max_end = new->end; memtype_rb_insert(&memtype_rbroot, new); } return err; } struct memtype *rbt_memtype_erase(u64 start, u64 end) { struct rb_node *deepest; struct memtype *data; data = memtype_rb_exact_match(&memtype_rbroot, start, end); if (!data) goto out; deepest = rb_augment_erase_begin(&data->rb); rb_erase(&data->rb, &memtype_rbroot); rb_augment_erase_end(deepest, memtype_rb_augment_cb, NULL); out: return data; } struct memtype *rbt_memtype_lookup(u64 addr) { struct memtype *data; data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE); return data; } #if defined(CONFIG_DEBUG_FS) int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos) { struct rb_node *node; int i = 1; node = rb_first(&memtype_rbroot); while (node && pos != i) { node = rb_next(node); i++; } if (node) { /* pos == i */ struct memtype *this = container_of(node, struct memtype, rb); *out = *this; return 0; } else { return 1; } } #endif