/* sched.c - SPU scheduler. * * Copyright (C) IBM 2005 * Author: Mark Nutter * * 2006-03-31 NUMA domains added. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spufs.h" struct spu_prio_array { DECLARE_BITMAP(bitmap, MAX_PRIO); struct list_head runq[MAX_PRIO]; spinlock_t runq_lock; int nr_waiting; }; static unsigned long spu_avenrun[3]; static struct spu_prio_array *spu_prio; static struct task_struct *spusched_task; static struct timer_list spusched_timer; /* * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). */ #define NORMAL_PRIO 120 /* * Frequency of the spu scheduler tick. By default we do one SPU scheduler * tick for every 10 CPU scheduler ticks. */ #define SPUSCHED_TICK (10) /* * These are the 'tuning knobs' of the scheduler: * * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. */ #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO) #define SCALE_PRIO(x, prio) \ max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) /* * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: * [800ms ... 100ms ... 5ms] * * The higher a thread's priority, the bigger timeslices * it gets during one round of execution. But even the lowest * priority thread gets MIN_TIMESLICE worth of execution time. */ void spu_set_timeslice(struct spu_context *ctx) { if (ctx->prio < NORMAL_PRIO) ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); else ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); } /* * Update scheduling information from the owning thread. */ void __spu_update_sched_info(struct spu_context *ctx) { /* * 32-Bit assignment are atomic on powerpc, and we don't care about * memory ordering here because retriving the controlling thread is * per defintion racy. */ ctx->tid = current->pid; /* * We do our own priority calculations, so we normally want * ->static_prio to start with. Unfortunately thies field * contains junk for threads with a realtime scheduling * policy so we have to look at ->prio in this case. */ if (rt_prio(current->prio)) ctx->prio = current->prio; else ctx->prio = current->static_prio; ctx->policy = current->policy; /* * A lot of places that don't hold list_mutex poke into * cpus_allowed, including grab_runnable_context which * already holds the runq_lock. So abuse runq_lock * to protect this field aswell. */ spin_lock(&spu_prio->runq_lock); ctx->cpus_allowed = current->cpus_allowed; spin_unlock(&spu_prio->runq_lock); } void spu_update_sched_info(struct spu_context *ctx) { int node = ctx->spu->node; mutex_lock(&cbe_spu_info[node].list_mutex); __spu_update_sched_info(ctx); mutex_unlock(&cbe_spu_info[node].list_mutex); } static int __node_allowed(struct spu_context *ctx, int node) { if (nr_cpus_node(node)) { cpumask_t mask = node_to_cpumask(node); if (cpus_intersects(mask, ctx->cpus_allowed)) return 1; } return 0; } static int node_allowed(struct spu_context *ctx, int node) { int rval; spin_lock(&spu_prio->runq_lock); rval = __node_allowed(ctx, node); spin_unlock(&spu_prio->runq_lock); return rval; } static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier); void spu_switch_notify(struct spu *spu, struct spu_context *ctx) { blocking_notifier_call_chain(&spu_switch_notifier, ctx ? ctx->object_id : 0, spu); } static void notify_spus_active(void) { int node; /* * Wake up the active spu_contexts. * * When the awakened processes see their "notify_active" flag is set, * they will call spu_switch_notify(); */ for_each_online_node(node) { struct spu *spu; mutex_lock(&cbe_spu_info[node].list_mutex); list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { if (spu->alloc_state != SPU_FREE) { struct spu_context *ctx = spu->ctx; set_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags); mb(); wake_up_all(&ctx->stop_wq); } } mutex_unlock(&cbe_spu_info[node].list_mutex); } } int spu_switch_event_register(struct notifier_block * n) { int ret; ret = blocking_notifier_chain_register(&spu_switch_notifier, n); if (!ret) notify_spus_active(); return ret; } EXPORT_SYMBOL_GPL(spu_switch_event_register); int spu_switch_event_unregister(struct notifier_block * n) { return blocking_notifier_chain_unregister(&spu_switch_notifier, n); } EXPORT_SYMBOL_GPL(spu_switch_event_unregister); /** * spu_bind_context - bind spu context to physical spu * @spu: physical spu to bind to * @ctx: context to bind */ static void spu_bind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid, spu->number, spu->node); spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); if (ctx->flags & SPU_CREATE_NOSCHED) atomic_inc(&cbe_spu_info[spu->node].reserved_spus); if (!list_empty(&ctx->aff_list)) atomic_inc(&ctx->gang->aff_sched_count); ctx->stats.slb_flt_base = spu->stats.slb_flt; ctx->stats.class2_intr_base = spu->stats.class2_intr; spu->ctx = ctx; spu->flags = 0; ctx->spu = spu; ctx->ops = &spu_hw_ops; spu->pid = current->pid; spu->tgid = current->tgid; spu_associate_mm(spu, ctx->owner); spu->ibox_callback = spufs_ibox_callback; spu->wbox_callback = spufs_wbox_callback; spu->stop_callback = spufs_stop_callback; spu->mfc_callback = spufs_mfc_callback; spu->dma_callback = spufs_dma_callback; mb(); spu_unmap_mappings(ctx); spu_restore(&ctx->csa, spu); spu->timestamp = jiffies; spu_cpu_affinity_set(spu, raw_smp_processor_id()); spu_switch_notify(spu, ctx); ctx->state = SPU_STATE_RUNNABLE; spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); } /* * Must be used with the list_mutex held. */ static inline int sched_spu(struct spu *spu) { BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); } static void aff_merge_remaining_ctxs(struct spu_gang *gang) { struct spu_context *ctx; list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { if (list_empty(&ctx->aff_list)) list_add(&ctx->aff_list, &gang->aff_list_head); } gang->aff_flags |= AFF_MERGED; } static void aff_set_offsets(struct spu_gang *gang) { struct spu_context *ctx; int offset; offset = -1; list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, aff_list) { if (&ctx->aff_list == &gang->aff_list_head) break; ctx->aff_offset = offset--; } offset = 0; list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { if (&ctx->aff_list == &gang->aff_list_head) break; ctx->aff_offset = offset++; } gang->aff_flags |= AFF_OFFSETS_SET; } static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, int group_size, int lowest_offset) { struct spu *spu; int node, n; /* * TODO: A better algorithm could be used to find a good spu to be * used as reference location for the ctxs chain. */ node = cpu_to_node(raw_smp_processor_id()); for (n = 0; n < MAX_NUMNODES; n++, node++) { node = (node < MAX_NUMNODES) ? node : 0; if (!node_allowed(ctx, node)) continue; mutex_lock(&cbe_spu_info[node].list_mutex); list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { if ((!mem_aff || spu->has_mem_affinity) && sched_spu(spu)) { mutex_unlock(&cbe_spu_info[node].list_mutex); return spu; } } mutex_unlock(&cbe_spu_info[node].list_mutex); } return NULL; } static void aff_set_ref_point_location(struct spu_gang *gang) { int mem_aff, gs, lowest_offset; struct spu_context *ctx; struct spu *tmp; mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; lowest_offset = 0; gs = 0; list_for_each_entry(tmp, &gang->aff_list_head, aff_list) gs++; list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, aff_list) { if (&ctx->aff_list == &gang->aff_list_head) break; lowest_offset = ctx->aff_offset; } gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, lowest_offset); } static struct spu *ctx_location(struct spu *ref, int offset, int node) { struct spu *spu; spu = NULL; if (offset >= 0) { list_for_each_entry(spu, ref->aff_list.prev, aff_list) { BUG_ON(spu->node != node); if (offset == 0) break; if (sched_spu(spu)) offset--; } } else { list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { BUG_ON(spu->node != node); if (offset == 0) break; if (sched_spu(spu)) offset++; } } return spu; } /* * affinity_check is called each time a context is going to be scheduled. * It returns the spu ptr on which the context must run. */ static int has_affinity(struct spu_context *ctx) { struct spu_gang *gang = ctx->gang; if (list_empty(&ctx->aff_list)) return 0; mutex_lock(&gang->aff_mutex); if (!gang->aff_ref_spu) { if (!(gang->aff_flags & AFF_MERGED)) aff_merge_remaining_ctxs(gang); if (!(gang->aff_flags & AFF_OFFSETS_SET)) aff_set_offsets(gang); aff_set_ref_point_location(gang); } mutex_unlock(&gang->aff_mutex); return gang->aff_ref_spu != NULL; } /** * spu_unbind_context - unbind spu context from physical spu * @spu: physical spu to unbind from * @ctx: context to unbind */ static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__, spu->pid, spu->number, spu->node); spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); if (spu->ctx->flags & SPU_CREATE_NOSCHED) atomic_dec(&cbe_spu_info[spu->node].reserved_spus); if (!list_empty(&ctx->aff_list)) if (atomic_dec_and_test(&ctx->gang->aff_sched_count)) ctx->gang->aff_ref_spu = NULL; spu_switch_notify(spu, NULL); spu_unmap_mappings(ctx); spu_save(&ctx->csa, spu); spu->timestamp = jiffies; ctx->state = SPU_STATE_SAVED; spu->ibox_callback = NULL; spu->wbox_callback = NULL; spu->stop_callback = NULL; spu->mfc_callback = NULL; spu->dma_callback = NULL; spu_associate_mm(spu, NULL); spu->pid = 0; spu->tgid = 0; ctx->ops = &spu_backing_ops; spu->flags = 0; spu->ctx = NULL; ctx->stats.slb_flt += (spu->stats.slb_flt - ctx->stats.slb_flt_base); ctx->stats.class2_intr += (spu->stats.class2_intr - ctx->stats.class2_intr_base); /* This maps the underlying spu state to idle */ spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); ctx->spu = NULL; } /** * spu_add_to_rq - add a context to the runqueue * @ctx: context to add */ static void __spu_add_to_rq(struct spu_context *ctx) { /* * Unfortunately this code path can be called from multiple threads * on behalf of a single context due to the way the problem state * mmap support works. * * Fortunately we need to wake up all these threads at the same time * and can simply skip the runqueue addition for every but the first * thread getting into this codepath. * * It's still quite hacky, and long-term we should proxy all other * threads through the owner thread so that spu_run is in control * of all the scheduling activity for a given context. */ if (list_empty(&ctx->rq)) { list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); set_bit(ctx->prio, spu_prio->bitmap); if (!spu_prio->nr_waiting++) __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); } } static void __spu_del_from_rq(struct spu_context *ctx) { int prio = ctx->prio; if (!list_empty(&ctx->rq)) { if (!--spu_prio->nr_waiting) del_timer(&spusched_timer); list_del_init(&ctx->rq); if (list_empty(&spu_prio->runq[prio])) clear_bit(prio, spu_prio->bitmap); } } static void spu_prio_wait(struct spu_context *ctx) { DEFINE_WAIT(wait); spin_lock(&spu_prio->runq_lock); prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); if (!signal_pending(current)) { __spu_add_to_rq(ctx); spin_unlock(&spu_prio->runq_lock); mutex_unlock(&ctx->state_mutex); schedule(); mutex_lock(&ctx->state_mutex); spin_lock(&spu_prio->runq_lock); __spu_del_from_rq(ctx); } spin_unlock(&spu_prio->runq_lock); __set_current_state(TASK_RUNNING); remove_wait_queue(&ctx->stop_wq, &wait); } static struct spu *spu_get_idle(struct spu_context *ctx) { struct spu *spu; int node, n; if (has_affinity(ctx)) { node = ctx->gang->aff_ref_spu->node; mutex_lock(&cbe_spu_info[node].list_mutex); spu = ctx_location(ctx->gang->aff_ref_spu, ctx->aff_offset, node); if (spu && spu->alloc_state == SPU_FREE) goto found; mutex_unlock(&cbe_spu_info[node].list_mutex); return NULL; } node = cpu_to_node(raw_smp_processor_id()); for (n = 0; n < MAX_NUMNODES; n++, node++) { node = (node < MAX_NUMNODES) ? node : 0; if (!node_allowed(ctx, node)) continue; mutex_lock(&cbe_spu_info[node].list_mutex); list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { if (spu->alloc_state == SPU_FREE) goto found; } mutex_unlock(&cbe_spu_info[node].list_mutex); } return NULL; found: spu->alloc_state = SPU_USED; mutex_unlock(&cbe_spu_info[node].list_mutex); pr_debug("Got SPU %d %d\n", spu->number, spu->node); spu_init_channels(spu); return spu; } /** * find_victim - find a lower priority context to preempt * @ctx: canidate context for running * * Returns the freed physical spu to run the new context on. */ static struct spu *find_victim(struct spu_context *ctx) { struct spu_context *victim = NULL; struct spu *spu; int node, n; /* * Look for a possible preemption candidate on the local node first. * If there is no candidate look at the other nodes. This isn't * exactly fair, but so far the whole spu schedule tries to keep * a strong node affinity. We might want to fine-tune this in * the future. */ restart: node = cpu_to_node(raw_smp_processor_id()); for (n = 0; n < MAX_NUMNODES; n++, node++) { node = (node < MAX_NUMNODES) ? node : 0; if (!node_allowed(ctx, node)) continue; mutex_lock(&cbe_spu_info[node].list_mutex); list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { struct spu_context *tmp = spu->ctx; if (tmp->prio > ctx->prio && (!victim || tmp->prio > victim->prio)) victim = spu->ctx; } mutex_unlock(&cbe_spu_info[node].list_mutex); if (victim) { /* * This nests ctx->state_mutex, but we always lock * higher priority contexts before lower priority * ones, so this is safe until we introduce * priority inheritance schemes. */ if (!mutex_trylock(&victim->state_mutex)) { victim = NULL; goto restart; } spu = victim->spu; if (!spu) { /* * This race can happen because we've dropped * the active list mutex. No a problem, just * restart the search. */ mutex_unlock(&victim->state_mutex); victim = NULL; goto restart; } mutex_lock(&cbe_spu_info[node].list_mutex); cbe_spu_info[node].nr_active--; mutex_unlock(&cbe_spu_info[node].list_mutex); spu_unbind_context(spu, victim); victim->stats.invol_ctx_switch++; spu->stats.invol_ctx_switch++; mutex_unlock(&victim->state_mutex); /* * We need to break out of the wait loop in spu_run * manually to ensure this context gets put on the * runqueue again ASAP. */ wake_up(&victim->stop_wq); return spu; } } return NULL; } /** * spu_activate - find a free spu for a context and execute it * @ctx: spu context to schedule * @flags: flags (currently ignored) * * Tries to find a free spu to run @ctx. If no free spu is available * add the context to the runqueue so it gets woken up once an spu * is available. */ int spu_activate(struct spu_context *ctx, unsigned long flags) { do { struct spu *spu; /* * If there are multiple threads waiting for a single context * only one actually binds the context while the others will * only be able to acquire the state_mutex once the context * already is in runnable state. */ if (ctx->spu) return 0; spu = spu_get_idle(ctx); /* * If this is a realtime thread we try to get it running by * preempting a lower priority thread. */ if (!spu && rt_prio(ctx->prio)) spu = find_victim(ctx); if (spu) { int node = spu->node; mutex_lock(&cbe_spu_info[node].list_mutex); spu_bind_context(spu, ctx); cbe_spu_info[node].nr_active++; mutex_unlock(&cbe_spu_info[node].list_mutex); return 0; } spu_prio_wait(ctx); } while (!signal_pending(current)); return -ERESTARTSYS; } /** * grab_runnable_context - try to find a runnable context * * Remove the highest priority context on the runqueue and return it * to the caller. Returns %NULL if no runnable context was found. */ static struct spu_context *grab_runnable_context(int prio, int node) { struct spu_context *ctx; int best; spin_lock(&spu_prio->runq_lock); best = find_first_bit(spu_prio->bitmap, prio); while (best < prio) { struct list_head *rq = &spu_prio->runq[best]; list_for_each_entry(ctx, rq, rq) { /* XXX(hch): check for affinity here aswell */ if (__node_allowed(ctx, node)) { __spu_del_from_rq(ctx); goto found; } } best++; } ctx = NULL; found: spin_unlock(&spu_prio->runq_lock); return ctx; } static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) { struct spu *spu = ctx->spu; struct spu_context *new = NULL; if (spu) { new = grab_runnable_context(max_prio, spu->node); if (new || force) { int node = spu->node; mutex_lock(&cbe_spu_info[node].list_mutex); spu_unbind_context(spu, ctx); spu->alloc_state = SPU_FREE; cbe_spu_info[node].nr_active--; mutex_unlock(&cbe_spu_info[node].list_mutex); ctx->stats.vol_ctx_switch++; spu->stats.vol_ctx_switch++; if (new) wake_up(&new->stop_wq); } } return new != NULL; } /** * spu_deactivate - unbind a context from it's physical spu * @ctx: spu context to unbind * * Unbind @ctx from the physical spu it is running on and schedule * the highest priority context to run on the freed physical spu. */ void spu_deactivate(struct spu_context *ctx) { __spu_deactivate(ctx, 1, MAX_PRIO); } /** * spu_yield - yield a physical spu if others are waiting * @ctx: spu context to yield * * Check if there is a higher priority context waiting and if yes * unbind @ctx from the physical spu and schedule the highest * priority context to run on the freed physical spu instead. */ void spu_yield(struct spu_context *ctx) { if (!(ctx->flags & SPU_CREATE_NOSCHED)) { mutex_lock(&ctx->state_mutex); __spu_deactivate(ctx, 0, MAX_PRIO); mutex_unlock(&ctx->state_mutex); } } static noinline void spusched_tick(struct spu_context *ctx) { if (ctx->flags & SPU_CREATE_NOSCHED) return; if (ctx->policy == SCHED_FIFO) return; if (--ctx->time_slice) return; /* * Unfortunately list_mutex ranks outside of state_mutex, so * we have to trylock here. If we fail give the context another * tick and try again. */ if (mutex_trylock(&ctx->state_mutex)) { struct spu *spu = ctx->spu; struct spu_context *new; new = grab_runnable_context(ctx->prio + 1, spu->node); if (new) { spu_unbind_context(spu, ctx); ctx->stats.invol_ctx_switch++; spu->stats.invol_ctx_switch++; spu->alloc_state = SPU_FREE; cbe_spu_info[spu->node].nr_active--; wake_up(&new->stop_wq); /* * We need to break out of the wait loop in * spu_run manually to ensure this context * gets put on the runqueue again ASAP. */ wake_up(&ctx->stop_wq); } spu_set_timeslice(ctx); mutex_unlock(&ctx->state_mutex); } else { ctx->time_slice++; } } /** * count_active_contexts - count nr of active tasks * * Return the number of tasks currently running or waiting to run. * * Note that we don't take runq_lock / list_mutex here. Reading * a single 32bit value is atomic on powerpc, and we don't care * about memory ordering issues here. */ static unsigned long count_active_contexts(void) { int nr_active = 0, node; for (node = 0; node < MAX_NUMNODES; node++) nr_active += cbe_spu_info[node].nr_active; nr_active += spu_prio->nr_waiting; return nr_active; } /** * spu_calc_load - given tick count, update the avenrun load estimates. * @tick: tick count * * No locking against reading these values from userspace, as for * the CPU loadavg code. */ static void spu_calc_load(unsigned long ticks) { unsigned long active_tasks; /* fixed-point */ static int count = LOAD_FREQ; count -= ticks; if (unlikely(count < 0)) { active_tasks = count_active_contexts() * FIXED_1; do { CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks); CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks); CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks); count += LOAD_FREQ; } while (count < 0); } } static void spusched_wake(unsigned long data) { mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); wake_up_process(spusched_task); spu_calc_load(SPUSCHED_TICK); } static int spusched_thread(void *unused) { struct spu *spu; int node; while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); schedule(); for (node = 0; node < MAX_NUMNODES; node++) { mutex_lock(&cbe_spu_info[node].list_mutex); list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) if (spu->ctx) spusched_tick(spu->ctx); mutex_unlock(&cbe_spu_info[node].list_mutex); } } return 0; } #define LOAD_INT(x) ((x) >> FSHIFT) #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) static int show_spu_loadavg(struct seq_file *s, void *private) { int a, b, c; a = spu_avenrun[0] + (FIXED_1/200); b = spu_avenrun[1] + (FIXED_1/200); c = spu_avenrun[2] + (FIXED_1/200); /* * Note that last_pid doesn't really make much sense for the * SPU loadavg (it even seems very odd on the CPU side..), * but we include it here to have a 100% compatible interface. */ seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", LOAD_INT(a), LOAD_FRAC(a), LOAD_INT(b), LOAD_FRAC(b), LOAD_INT(c), LOAD_FRAC(c), count_active_contexts(), atomic_read(&nr_spu_contexts), current->nsproxy->pid_ns->last_pid); return 0; } static int spu_loadavg_open(struct inode *inode, struct file *file) { return single_open(file, show_spu_loadavg, NULL); } static const struct file_operations spu_loadavg_fops = { .open = spu_loadavg_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; int __init spu_sched_init(void) { struct proc_dir_entry *entry; int err = -ENOMEM, i; spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); if (!spu_prio) goto out; for (i = 0; i < MAX_PRIO; i++) { INIT_LIST_HEAD(&spu_prio->runq[i]); __clear_bit(i, spu_prio->bitmap); } spin_lock_init(&spu_prio->runq_lock); setup_timer(&spusched_timer, spusched_wake, 0); spusched_task = kthread_run(spusched_thread, NULL, "spusched"); if (IS_ERR(spusched_task)) { err = PTR_ERR(spusched_task); goto out_free_spu_prio; } entry = create_proc_entry("spu_loadavg", 0, NULL); if (!entry) goto out_stop_kthread; entry->proc_fops = &spu_loadavg_fops; pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); return 0; out_stop_kthread: kthread_stop(spusched_task); out_free_spu_prio: kfree(spu_prio); out: return err; } void spu_sched_exit(void) { struct spu *spu; int node; remove_proc_entry("spu_loadavg", NULL); del_timer_sync(&spusched_timer); kthread_stop(spusched_task); for (node = 0; node < MAX_NUMNODES; node++) { mutex_lock(&cbe_spu_info[node].list_mutex); list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) if (spu->alloc_state != SPU_FREE) spu->alloc_state = SPU_FREE; mutex_unlock(&cbe_spu_info[node].list_mutex); } kfree(spu_prio); }